Claim Missing Document
Check
Articles

Found 14 Documents
Search

Influence of Brand Image and Service Quality on Customer Satisfaction, and Its Impact on Perceived Value of Services, Corporate Image, and Corporate Reputation Salsabila, Aulia; Kustiawan, Unggul
Jurnal Akuntansi, Manajemen dan Ilmu Ekonomi (Jasmien) Vol. 5 No. 04 (2025): Vol. 5 No. 04 (2025): Jurnal Akuntansi, Manajemen dan Ilmu Ekonomi (Jasmien)
Publisher : Cattleya Darmaya Fortuna

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54209/jasmien.v5i04.1547

Abstract

This study explores the factors that influence customer satisfaction in shopping centers, with a focus on brand image and service quality. These two factors are believed to contribute to customer satisfaction, which in turn shapes the perceived value of services and impacts corporate image and corporate reputation. However, further research is needed to understand this relationship empirically. This quantitative study uses the Structural Equation Modeling (SEM) method, conducted in 2025 with a focus on visitors from 8 shopping centers in Bekasi. Data was collected through an online questionnaire using Google Forms and involved 156 respondents. The analysis process was carried out using the SmartPLS 4 application. The results of the study indicate that brand image and service quality have a positive effect on customer satisfaction. Furthermore, customer satisfaction contributes to an increase in the perceived value of services, which directly impacts the strengthening of corporate image and corporate reputation. These findings provide practical contributions for shopping mall managers in designing strategies to strengthen brand image and improve service quality, thereby creating sustainable customer satisfaction and reinforcing the company's identity and reputation in the eyes of consumers.
MEMAHAMI LEGALITAS REMIX & PARODI DI SOSIAL MEDIA; MENGKAJI AMBIGUITAS UU HAK CIPTA TERHADAP KONTEN BERBASIS KEBEBASAN BERKARYA Salsabila, Aulia; Franciska, Wira; Candra, Mardi
SINERGI : Jurnal Riset Ilmiah Vol. 2 No. 8 (2025): SINERGI : Jurnal Riset Ilmiah, Agustus 2025
Publisher : Lembaga Pendidikan dan Penelitian Manggala Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62335/sinergi.v2i8.1747

Abstract

The evolution of digital culture has fostered the emergence of transformational content—such as remixes and parodies—as legitimate forms of creative expression. However, Indonesia’s copyright framework, particularly Article 44 of Law No. 28 of 2014, remains normatively ambiguous and fails to ensure legal certainty for such expressions. Employing a normative legal approach, this study identifies a structural tension between the protection of exclusive rights and freedom of expression, exacerbated by formalistic state enforcement and algorithmic content moderation by digital platforms that lack contextual assessment. This research recommends a reformulation of the “fairness” clause grounded in the fair use doctrine, along with the development of adjudicative mechanisms that safeguard substantive digital justice.
Analisis yuridis terhadap kasus tawuran pada tahap penuntutan di Kejaksaan Negeri Pati Salsabila, Aulia; Aulana, Muhammad Saukhan; Rofiq, Nur
Journal of Law, Administration, and Social Science Vol 5 No 2 (2025)
Publisher : PT WIM Solusi Prima

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54957/jolas.v5i2.1504

Abstract

Pentingnya penerapan diversi dalam penanganan kasus anak yang berhadapan dengan hukum pada tahap penuntutan di Kejaksaan Negeri Pati. Artikel ini membahas permasalahan hukum terkait tawuran yang melibatkan anak di bawah umur, khususnya pada tahap penuntutan di Kejaksaan Negeri Pati. Gap hukum yang diidentifikasi adalah kegagalan proses diversi yang seharusnya dapat menghindarkan anak dari stigma hukum dan memfasilitasi reintegrasi sosial. Penelitian ini bertujuan untuk mengeksplorasi penyebab kegagalan tersebut serta menganalisis implementasi Undang-Undang Nomor 11 Tahun 2012 tentang Sistem Peradilan Pidana Anak yang berkaitan dengan posisi Jaksa Penuntut Umum. Metode yang digunakan adalah yuridis normative dengan pendekatan peraturan perundang-undangan, di mana data dikumpulkan melalui studi kepustakaan untuk mengkaji regulasi yang relevan dalam konteks perlindungan anak. Hasil penelitian menunjukkan bahwa kegagalan diversi disebabkan karena ketidakhadiran korban selama proses diversi di Kejaksaan sehingga diversi tidak dapat berjalan. Kesimpulan dari penelitian ini mengharuskan perlunya evaluasi dan peningkatan peran Jaksa dalam proses diversi, serta saran untuk memperkuat regulasi perlindungan anak agar lebih efektif dalam mencegah terulangnya tawuran dan melindungi hak-hak anak.
Perbandingan Klasifikasi Penyakit Kanker Paru-Paru menggunakan Support Vector Machine dan K-Nearest Neighbor Desiani, Anita; Indra Maiyanti, Sri; Andriani, Yuli; Suprihatin, Bambang; Amran, Ali; Marselina, Nyanyu Chika; Salsabila, Aulia
Jurnal PROCESSOR Vol 18 No 1 (2023): Jurnal Processor
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/processor.2023.18.1.700

Abstract

Lung cancer is a condition where cells grow uncontrollably in the lungs due to carcinogens. Lung cancer is the first cause of death in men and women’s second cause of death. One way to reduce the death rate due to lung cancer is to carry out early detection, that is classification. The process of identifying and grouping objects with the same characteristics or characteristics into several predetermined classes is called classification. Several algorithms widely used in the classification process are Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). SVM has advantages, being able to identify hyperplanes separately to maximize the margin between two or more different classes, but it is difficult to use in large data, while KNN can perform large-scale data separation and is resilient to noise in the data. This study aims to build a model using the SVM and KNN algorithms to classify lung cancer. The lung cancer dataset has a total of 309 data, where data is divided using the percentage split method and k-fold cross validation on each algorithm used. The parameters used in evaluating the model are accuracy, precision, and recall. From the research, the highest accuracy, precision, and recall values were obtained in the SVM algorithm with the percentage split method with consecutive values, namely 95.16%, 88%, and 82.5%. This indicates that the SVM algorithm with the percentage split method performs better in classifying lung cancer than other algorithms and methods,