Claim Missing Document
Check
Articles

Found 3 Documents
Search

Therapeutic Effects of BRC Functional Food from Indonesian Black Rice on Body Weight and Haematological Parameters in Obese Rats Sofyantoro, Fajar; Syam, Adi Mazdi; Adania, Baik Aisyah; Almunawar, Muhammad Fikri; Nasution, Nurlita Putri Bela; Hidayat, Rheina Faticha Asyamsa; Mataram, Made Bagus Auriva; Maharesi, Chesa Ekani; Nurhidayah, Septika; Purwestri, Yekti Asih; Nuriliani, Ardaning; Hidayati, Lisna; Pratiwi, Rarastoeti
Journal of Tropical Biodiversity and Biotechnology Vol 9, No 1 (2024): March
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jtbb.85847

Abstract

Obesity increases the risk of various diseases. Black rice, renowned for its high anthocyanin content, is considered a potential functional food for preventing metabolic disorders. The current study investigated the effects of black rice crunch (BRC) on body weight and haematological profiles in obese rats. Rats were fed with high-fat diet to induce obesity and supplemented with different concentrations of BRC for 4 and 8 weeks. The results showed that high-fat diet effectively induced obesity, as evidenced by significant increase in body weight. Importantly, 75% BRC supplementation resulted in significant weight reduction in obese rats. Further analysis revealed an increase in erythrocyte numbers in obese groups supplemented with 75% BRC, but no significant changes in haemoglobin concentration or haematocrit percentage. Further investigation showed that 75% BRC led to a decrease in mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), and mean corpuscular volume (MCV), potentially affecting the size and concentration of haemoglobin within erythrocytes. The total leucocytes count increased with the high-fat diet, while BRC supplementation alone did not have significant impact. Lymphocyte percentage remained stable across the groups, indicating minimal influence of the dietary interventions. Neutrophil percentage varied initially but was not specific to BRC or the high-fat diet. Platelet count and distribution width were not significantly influenced, but mean platelet volume (MPV) increased after 8 weeks of BRC treatment, suggesting larger platelet sizes associated with obesity. Overall, the study provides important insights into the effects of BRC supplementation on body weight and haematological parameters related to obesity. 
Natural Dye as an Alternative to Hematoxylin-Eosin Staining on Histological Preparations Karlina, Ina; Pusparini, Nur Ainun Oktavia; Maharesi, Chesa Ekani; Saeed, Faisal; Retnoaji, Bambang; Saragih, Hendry; Septriani, Nur Indah; Rohmah, Zuliyati; Hadi, Susilo; Nuriliani, Ardaning
Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati Vol 10, No 2 (2025): June 2025
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/biota.v10i2.7909

Abstract

Hematoxylin-eosin is widely utilized in the field of animal microtechniques. However, the need to develop alternative dyes from natural sources such as plants has gained attention. Several studies have shown that many plants contain secondary metabolites with the potential to be developed as natural dyes. Lonchocarpus cyanescens and Syzygium cumini are promising candidates as alternative dyes for hematoxylin, while Lawsonia inermis and Hibiscus sabdariffa have shown potential as substitute dyes for eosin. These plants contain various secondary metabolites, including anthocyanins, flavonoids, chlorophyll, betalains, alkaloids, saponins, tannins, carbohydrates, proteins, phenolics, terpenoids, quinones, coumarins, xanthones, and resins. L. cyanescens exhibits a strong binding affinity to cells and tissues, particularly testicular tissue. Dyes derived from Syzygium cumini have been shown to provide a good staining result for rat liver cells. In contrast, dyes from Lawsonia inermis can stain cytoplasmic components and muscle fibers. Additionally, the dye from Hibiscus sabdariffa is capable of staining various biological components, including sperm, nerve cells, and blood cells. The dye preparation process involved extraction from different plant organs, such as leaves, flowers, and fruit. These findings suggest that secondary metabolites from these four plants hold significant potential for development as natural dyes to replace hematoxylin-eosin in histological applications.
Natural Dye as an Alternative to Hematoxylin-Eosin Staining on Histological Preparations Karlina, Ina; Pusparini, Nur Ainun Oktavia; Maharesi, Chesa Ekani; Saeed, Faisal; Retnoaji, Bambang; Saragih, Hendry; Septriani, Nur Indah; Rohmah, Zuliyati; Hadi, Susilo; Nuriliani, Ardaning
Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati Vol 10, No 2 (2025): June 2025
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/biota.v10i2.7909

Abstract

Hematoxylin-eosin is widely utilized in the field of animal microtechniques. However, the need to develop alternative dyes from natural sources such as plants has gained attention. Several studies have shown that many plants contain secondary metabolites with the potential to be developed as natural dyes. Lonchocarpus cyanescens and Syzygium cumini are promising candidates as alternative dyes for hematoxylin, while Lawsonia inermis and Hibiscus sabdariffa have shown potential as substitute dyes for eosin. These plants contain various secondary metabolites, including anthocyanins, flavonoids, chlorophyll, betalains, alkaloids, saponins, tannins, carbohydrates, proteins, phenolics, terpenoids, quinones, coumarins, xanthones, and resins. L. cyanescens exhibits a strong binding affinity to cells and tissues, particularly testicular tissue. Dyes derived from Syzygium cumini have been shown to provide a good staining result for rat liver cells. In contrast, dyes from Lawsonia inermis can stain cytoplasmic components and muscle fibers. Additionally, the dye from Hibiscus sabdariffa is capable of staining various biological components, including sperm, nerve cells, and blood cells. The dye preparation process involved extraction from different plant organs, such as leaves, flowers, and fruit. These findings suggest that secondary metabolites from these four plants hold significant potential for development as natural dyes to replace hematoxylin-eosin in histological applications.