Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Analysis and Performance Comparison of Fuzzy Inference Systems in Handling Uncertainty: A Review Furizal, Furizal; Ma'arif, Alfian; Wijaya, Setiawan Ardi; Murni, Murni; Suwarno, Iswanto
Journal of Robotics and Control (JRC) Vol 5, No 4 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i4.22123

Abstract

Uncertainty is an inevitable characteristic in human life and systems, posing challenges in decision-making and data analysis. Fuzzy theory emerges to address this uncertainty by describing variables with vague or uncertain values, one of which is the Fuzzy Inference System (FIS). This research analyzes and compares the performance of FIS from previous studies as a solution to manage uncertainty. FIS allows for flexible and responsive representations of truth levels using human-like linguistic rules. Common FIS methods include FIS-M, FIS-T, and FIS-S, each with different inference and defuzzification approaches. The findings of this research review, referencing previous studies, indicate that the application of FIS in various contexts such as prediction, medical diagnosis, and financial decision-making, yields very high accuracy levels up to 99%. However, accuracy comparisons show variations, with FIS-M tending to achieve more stable accuracy based on the referenced studies. The accuracy difference among FIS-M studies is not significantly different, only around 7.55%. Meanwhile, FIS-S has a wider accuracy range, from 81.48% to 99% (17.52%). FIS-S performs best if it can determine influencing factors well, such as determining constant values in its fuzzy rules. Additionally, the performance comparison of FIS can also be influenced by other factors such as data complexity, variables, domain, membership functions (curves), fuzzy rules, and defuzzification methods used in the study. Therefore, it is important to consider these factors and select the most suitable FIS method to manage uncertainty in the given situation.