Batik merupakan warisan budaya Indonesia yang kaya akan nilai estetika dan keragaman motif berdasarkan asal daerahnya. Namun, upaya digitalisasi dan klasifikasi motif batik secara otomatis masih menghadapi tantangan, terutama dalam hal ketersediaan dataset representatif dan pendekatan pemodelan yang optimal. Penelitian ini bertujuan untuk mengembangkan sistem klasifikasi motif batik berdasarkan daerah asal menggunakan metode deep learning berbasis Convolutional Neural Network (CNN). Dataset citra batik yang digunakan terdiri dari 1.200 gambar, mewakili empat daerah utama yaitu Solo, Pekalongan, Cirebon, dan Madura. Model CNN dirancang dengan empat blok konvolusi dan dua fully connected layer, serta dilatih menggunakan optimizer Adam dan teknik early stopping. Hasil eksperimen menunjukkan bahwa model mencapai akurasi klasifikasi yang tinggi dan mampu membedakan motif berdasarkan karakteristik visual khas masing-masing daerah. Meskipun terdapat sedikit kesalahan klasifikasi antara motif yang memiliki kemiripan visual, secara keseluruhan model menunjukkan kinerja yang baik dan stabil. Penelitian ini menyimpulkan bahwa pendekatan deep learning efektif dalam mengenali motif batik secara otomatis dan berpotensi diimplementasikan dalam aplikasi edukasi budaya maupun promosi digital batik berbasis kecerdasan buatan.