Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : EIGEN MATHEMATICS JOURNAL

Subgrup Non Trivial Dari Grup Dihedral Abdul Gazir; I Gede Adhitya Wisnu Wardhana
Eigen Mathematics Journal Vol. 2 No. 2 Desember 2019
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/emj.v1i2.26

Abstract

Grup  dikatakan grup dihedral dengan order , adalah grup yang dibangun oleh dua elemen  dengan sifat . Grup dihedral dinotasikan dengan .  Sama halnya dengan grup yang lain, grup dihedral juga memiliki subgrup. Pada paper ini akan dibahas teorema-teorema yang berkaitan dengan subgrup dihedral, adapun salah satunya hasilnya dapat memperlihatkan jika  prima maka subgrup-subgrup dibagi kedalam 2 macam yaitu subgrup yang mengandung rotasi dan subgrup yang mengandung refleksi sedangkan jika  komposit maka subgrup-subgrupnya dibagi kedalam 3 macam subgrup yaitu subgrup yang mengandung rotasi, refleksi dan gabungannya.
Some Special Graphs of Quaternion Group Abdul Gazir S; I Gede Adhitya Wisnu Wardhana
Eigen Mathematics Journal Vol. 4 No. 1 Juni 2021
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/emj.v4i1.74

Abstract

Research on an algebraic structure represented in graph theory opens the way for new research in recent years. Several types of new graphs continue to be developed, such as coprime and non-coprime graphs. This article will represent the quaternion group in several graphs, such as coprime graphs, non-coprime graphs, commuting graphs, non-commuting graphs, and identity graphs. We obtained several theorems about unique graphs. One of the results is that non-coprime graphs from the quaternion group are complete and regular graphs.
The Power Graph of a Dihedral Group Evi Yunartika Asmarani; Abdul Gazir Syarifudin; I Gede Adhitya Wisnu Wardhana; Ni Wayan Switrayni
Eigen Mathematics Journal Vol. 4 No. 2 Desember 2021
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/emj.v4i2.117

Abstract

Graph theory is one of the topics in mathematics that is quite interesting to study because it is applicable and can be combined with other mathematical topics such as group theory. The combination of graph theory and group theory is that graphs can be used to represent a group. An example of a graph is a power graph. A power graph of the group  is defined as a graph whose vertex set is all elements of  and two distinct vertices  and  are connected if and only if  or for a positive integer x and y. In this study, the author discusses the power graph of the dihedral group  The results obtained from this study are the power graph of the dihedral group  where  with  prime numbers and an  natural number is a graph consisting of two non-disjoint subgraphs, namely complete subgraphs and star subgraphs. And we find that its radius and diameter are 1 and 2.
The Intersection Graph of a Dihedral Group Nurhabibah Nurhabibah; Abdul Gazir Syarifudin; I Gede Adhitya Wisnu Wardhana; Qurratul Aini
Eigen Mathematics Journal Vol. 4 No. 2 Desember 2021
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/emj.v4i2.119

Abstract

The intersection graph of a finite group G is a graph (V,E) where V is a set of all non-trivial subgroups of G and E is a set of edges where two distinct subgroups H_i , H_j  are said to be adjacent if and only if H_i \cap H_j \neq {e} . This study discusses the intersection graph of a dihedral group D_{2n} specifically the subgraph, degree of vertices, radius, diameter, girth, and domination number. From this study, we obtained that if n=p^2 then the intersection graph of D_{2n} is containing complete subgraph K_{p+2} and \gamma(\Gamma_{D_{2n}})=p.