Claim Missing Document
Check
Articles

Penerapan Learning Vector Quantization Dalam Pengolahan Citra Digital Untuk Deteksi Penyakit Kulit Rizki Akbar Pratama; Barry Ceasar Octariadi; Syarifah Putri Agustini Alkadri
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9270

Abstract

Skin, as the largest human organ, covers more than two square meters and accounts for about 15% of body mass. Consisting of three main layers of epidermis, dermis, and subcutaneous tissue, the skin serves as a physical shield and barrier against infection, injury, and UV radiation. Skin diseases such as chickenpox, monkey pox, measles and herpes are medical challenges that require quick and accurate diagnosis. This study used 520 digital images (130 per category) from Mendeley Data and online sources. The Learning Vector Quantization (LVQ) algorithm was applied for image classification based on the extracted features. Results showed an overall accuracy of 90.74%, with respective accuracies: 97% (chickenpox), 98% (monkey pox), 91% (measles), and 100% (herpes). Evaluation using confusion matrix resulted in accuracy, precision, recall, and F1-score values of 0.91, indicating strong model performance. These findings demonstrate the potential of LVQ as a digital image-based skin disease diagnosis tool.
The Development of Android Based on Legal Protection System for Women and Children Hazilina, Hazilina; Alkadri, Syarifah Putri Agustini
International Journal of Law Reconstruction Vol 8, No 1 (2024): International Journal of Law Reconstruction
Publisher : UNISSULA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26532/ijlr.v8i1.36235

Abstract

The issue of protecting women and children is becoming a concern in many parts of the world, including Indonesia. Applications can help women and children face dangerous conditions, increase public awareness, and empower them in handling cases of sexual harassment, requiring alternative technology-based solutions. The research method is juridical-empirical using a positivism paradigm, with a population of Pontianak city. Data was collected through literature study, documentation, and questionnaires. The legal protection for women and children in Pontianak City in terms of overcoming violence was found to be good, The community believed that the government was not adequately addressing incidences of abuse against women and children. Supporting factors suggest that the public can be helped by reporting acts of violence online.
Penerapan Jaringan Syaraf Tiruan Backpropagation dalam Pengenalan Huruf Hijaiyah Sufi Vanitra; Barry Ceasar Octariadi; Syarifah Putri Agustini Alkadri
Jurnal Sistem dan Informatika (JSI) Vol 19 No 2 (2025): Jurnal Sistem dan Informatika (JSI)
Publisher : Direktorat Penelitian,Pengabdian Masyarakat dan HKI - Institut Teknologi dan Bisnis (ITB) STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/jsi.v19i2.736

Abstract

Pemanfaatan teknologi dalam pembelajaran bahasa Arab dan Al-Qur'an masih kurang dan terkendala oleh minimnya sistem yang mampu mengenali huruf hijaiyah tulisan tangan secara akurat. Penelitian ini bertujuan mengembangkan sistem klasifikasi huruf hijaiyah tulisan tangan menggunakan Jaringan Syaraf Tiruan (JST) algoritma backpropagation yang digabungkan dengan teknik ekstraksi ciri bentuk dan tekstur (GLCM). Dataset terdiri dari 1200 data latih dan 450 data uji dengan citra huruf hijaiyah tulisan tangan. Tahapan penelitian meliputi preprocessing citra (resize, grayscale, Gaussian filter, binarisasi Otsu), ekstraksi 24 fitur (8 fitur bentuk dan 16 fitur GLCM), normalisasi, serta pelatihan dan pengujian model. Hasil pelatihan model mencapai akurasi sempurna 100%, sedangkan hasil pengujian pada data tulisan tangan menggunakan data Kaggle sebesar 93,77%. Sedangkan pengujian menggunakan tulisan tangan secara langsung sebesar 93%. Namun, ketika diuji dengan data huruf font digital yang belum pernah dilihat sebelumnya, akurasi sistem menurun drastis menjadi 20%. Hasil ini menyimpulkan bahwa model backpropagation yang dibangun sangat efektif untuk mengenali pola spesifik dari dataset tulisan tangan yang dilatih, namun memiliki kemampuan generalisasi yang terbatas terhadap variasi bentuk huruf yang baru.