cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 1,981 Documents
Effect of Salinity and Oxygen Condition on Phosphate Release from Marine Sediment Measured Using Diffusive Gradient in Thin Film (DGT) Technique Askal Maimulyanti; Budiawan Budiawan; Asep Saefumillah; Heny Suseno
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (354.922 KB) | DOI: 10.22146/ijc.35233

Abstract

The diffusive gradient in thin film (DGT) is an analytical technique to determine phosphate in the environment. This technique uses a thin film diffusive hydrogel in contact with a binding phase (ferrihydrite) to binding of phosphate. The released phosphate from marine sediment of Jakarta Bay was studied by DGT technique for effect of salinity and oxygen condition. Effect of salinity was observed by NaCl concentration from 0-35 g/L. The maximum phosphate release from sediment was occurred at the concentration of NaCl 30 g/L with incubation for 15 days with phosphate released at 113.99 μg/L, MDGT of 4.7723 μg and CDGT of 17.56 μg/L. The experiment showed the increase of MgCl2 and CaCl2 concentration reduced phosphate release from sediment. The condition of oxygen indicating the release of phosphate under anaerobic conditions is greater than the aerobic condition. The aerobic conditions with incubation for 21 days showed the release of phosphate from sediment to overlying water of 124.72 μg/L, MDGT of 2.4492 μg and CDGT of 6.4380 μg/L. Anaerobic conditions with incubation for 21 days showed phosphate release from sediment to overlying water of 208.62 μg/L, MDGT of 6.1081 μg and CDGT of 16.06 μg/L. The experiment shows that salinity and oxygen concentration influences phosphate release from marine sediment of Jakarta Bay.
Congo Red Azo Dye Removal and Study of Its Kinetics by Aloe Vera Mediated Copper Oxide Nanoparticles Madiha Batool; Muhammad Zahid Qureshi; Farwa Hashmi; Nida Mehboob; Abdul Salam Shah
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (397.671 KB) | DOI: 10.22146/ijc.35626

Abstract

Nanotechnology is generating interest of researchers toward cost-free and environment-friendly biosynthesis of nanoparticles. In this research, biosynthesis of stable copper nanoparticles has been done by using aloe vera leaves extract which has been prepared in de-ionized water. The aim of this study is the tracing of an object by green synthesis of copper oxide nanoparticles with the interaction of leaves extract and copper salt and its dye removal efficiency. The results have confirmed the efficient removal of Congo red (CR) dye using copper oxide nanoparticles. Furthermore, we have examined the effect of variables like concentration, time, pH, and adsorbent dosage. We have observed maximum 1.1 mg/g dye removal at 10 min time interval, pH 2, and 5 mg/g nanoparticles. The shape of the copper nanoparticles was spherical, and their range of grain was 80–120 nm. The EDX of synthesized nanoparticles showed copper 38% and 65% oxygen. UV spectrophotometer analysis confirms peak of the copper nanoparticles between 200–600 nm.
P84/Zeolite-Carbon Composite Mixed Matrix Membrane for CO2/CH4 Separation Triyanda Gunawan; Retno Puji Rahayu; Rika Wijiyanti; Wan Norharyati Wan Salleh; Nurul Widiastuti
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (541.97 KB) | DOI: 10.22146/ijc.35727

Abstract

Mixed Matrix Membranes (MMMs) which consist of 0.3 wt.% Zeolite-Carbon Composite (ZCC) dispersed in BTDA-TDI/MDI (P84 co-polyimide) have been prepared through phase inversion method by using N-methyl-2-pyrrolidone (NMP) as a solvent. Membranes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Thermogravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR). Membrane performance was measured by a single gas permeation of CO2 and CH4. The maximum permeability of CO2 and CH4, which up to 12.67 and 6.03 Barrer, respectively. P84/ZCC mixed matrix membrane also showed a great enhancement in ideal selectivity of CO2/CH4 2.10 compared to the pure P84 co-polyimide membrane.
Synthesis, Characterization and Catalytic Activity of NiO-CoO-MgO Nano-Composite Catalyst Salih Hadi Kadhim; Tariq Hussein Mgheer; Hussein Idrees Ismael; Khudheyer Jawad Kadem; Ahmed Saadon Abbas; Abbas Jasim Atiyah; Iman Jassim Mohamad
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (592.937 KB) | DOI: 10.22146/ijc.38119

Abstract

The ternary NiO-CoO-MgO catalyst in three ratios 20:20:60, 25:25:50, and 30:30:40 for these component oxides respectively, were synthesized by co-precipitation method of their carbonates by addition of a precipitate agent in basic media, and then calcinated these carbonate to obtain of mixed oxides. The prepared catalysts were characterized by using Powder X-Ray Diffraction (PXRD), Fourier Infrared spectroscopy (FT-IR), and Atomic Force Microscopy techniques (AFM) were used for identification of the prepared catalysts. The result showed that the particle size of these catalyst ratios, were in the nano range and the smallest size was 25:25:50. The investigation of catalytic activity of prepared catalysts was done by photo decolorization of Celestine blue B dye from simulated industrial wastewaters in aqueous solution. The decolorization efficiency of dye reached 99.9% after irradiation time for 1 h. Study the effect of different reaction conditions such as the pH of the medium, the weight of semiconductor and temperature of mixture reaction were shown that the maximum degradation was observed in conditions at pH = 4, catalyst dosage = 0.08 g, and temperature = 303 K.
Combustion Synthesis Ironmaking: Investigation on Required Carbon Amount in Raw Material from the Viewpoint of Adiabatic Flame Temperature Calculation Keisuke Abe; Ade Kurniawan; Masafumi Sanada; Takahiro Nomura; Tomohiro Akiyama
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (573.159 KB) | DOI: 10.22146/ijc.38359

Abstract

Combustion synthesis (CS) is a simple and very fast method to synthesize a target material. New ironmaking method via the CS using carbon-infiltrated iron ore was proposed, and the possible conditions for the method were investigated. Adiabatic flame temperatures (Tad) of the CS reaction, maximum reachable temperatures in an adiabatic system, were calculated to estimate the sample temperature during the CS. To reach the adiabatic temperature of 1811 K, 23.9, 27.9, and 29.3 wt.%-C were required for Fe2O3, Fe3O4, and FeO, respectively. When the carbon amount is higher than the calculated one, molten iron which is separated from slag components should be obtained via the CS.
Valuable Chemicals Derived from Pyrolysis Liquid Products of Spirulina platensis Residue Siti Jamilatun; Budhijanto Budhijanto; Rochmadi Rochmadi; Avido Yuliestyan; Arief Budiman
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (356.615 KB) | DOI: 10.22146/ijc.38532

Abstract

With a motto of preserving nature, the use of renewable resources for the fulfillment of human needs has been seen echoing these days. In response, microalgae, a water-living microorganism, is perceived as an interesting alternative due to its easy-to-cultivate nature. One of the microalgae, which possess the potential for being the future source of energy, food, and health, is Spirulina plantesis. Aiming to identify valuable chemicals possibly derived from it, catalytic and non-catalytic pyrolysis process of the residue of S. plantesis microalgae has been firstly carried out in a fixed-bed reactor over the various temperature of 300, 400, 500, 550 and 600 °C. The resulting vapor was condensed so that the liquid product consisting of the top product (oil phase) and the bottom product (water phase) can be separated. The composition of each product was then analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). In the oil phase yield, the increase of aliphatic and polyaromatic hydrocarbons (PAHs) and the decrease of the oxygenated have been observed along with the increase of pyrolysis temperature, which might be useful for fuel application. Interestingly, their water phase composition also presents some potential chemicals, able to be used as antioxidants, vitamins and food additives.
Pyrolusite Bioleaching by an Indigenous Acidithiobacillus sp KL3 Isolated from an Indonesian Sulfurous River Sediment Endah Retnaningrum; Wahyu Wilopo
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (381.488 KB) | DOI: 10.22146/ijc.38898

Abstract

The manganese bioleaching process of pyrolusite from Kliripan, Indonesia using Acidithiobacillus sp KL3 was investigated. The influence pulp densities of pyrolusite (0.01, 0.02, 0.03 and 0.05 g/cm3) on the bioleaching processes were studied for 16 days. The reduction on pH values, the increasing of oxidation-reduction potential (ORP), sulfate and manganese concentration were analyzed. The manganese bioleaching mechanism of pyrolusite by the strain was monitored using Scanning Electron Microscope-Energy Dispersive-X-ray Spectroscopy (SEM-EDX). The results indicated that 0.02 g/cm3 of pyrolusite was considered to be the optimal pulp density for manganese bioleaching process. During this process, pH values decreased, furthermore resulted in increasing of ORP, the concentration of sulfate and manganese. SEM-EDX analysis clearly showed the evidence of directly bacterial cell attachment into the surface of pyrolusite. Extracellular polymeric substances (EPSs) were further founded on that surface. Sulfur elemental was oxidized by the strain which was then confirmed of resulting in solubilized manganese.
Development and Validation of a Four-Tier Diagnostic Instrument for Chemical Kinetics (FTDICK) Habiddin Habiddin; Elizabeth Mary Page
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (56.697 KB) | DOI: 10.22146/ijc.39218

Abstract

The present study outlines the development and validation of a four-tier diagnostic instrument to explore first year undergraduate students’ understanding of chemical kinetics (FTDICK). The four-tier instrument is a recent format and has been applied only sparsely in a limited number of subject areas, not including chemical kinetics. This study confirms the importance of a four-tier approach in fully investigating students’ poor knowledge and understanding. The FTDICK described here involves 20 questions with a confidence level linked to both the question tier and the reason tier. The development of the instrument followed the procedure used for the two-tier instrument developed by Treagust and involves (1) testing & interviewing, (2) identifying & collecting students’ unscientific ideas, (3) developing the prototype FTDICK, (4) validating the prototype FTDICK, and (5) developing the final FTDICK. The initial steps revealed a number of areas of misconceptions to be explored in the final instrument. The instrument has been developed and the prototype tested using international cohorts of students from the University of Reading, UK and two Indonesian Universities. Comprehensive item analysis on the results showed the instrument to be valid and reliable and suitable for identifying students’ understanding of chemical kinetics. This study confirms the importance of a four-tier approach for investigating students’ prior knowledge and understanding.
Effect of Key Parameters on Jacalin Extraction from Aqueous Phase into Anionic Reverse Micelles Sharifah Fathiyah Sy Mohamad; Farhan Mohd Said; Mimi Sakinah Abdul Munaim; Shahril Mohamad
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (284.855 KB) | DOI: 10.22146/ijc.39705

Abstract

This study demonstrates the extraction of jacalin from crude extract of jackfruit seeds using anionic surfactant based reverse micellar system, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane. Effects of various parameters, such as, NaCl concentration (0.05 – 1 M), pH of aqueous phase (pH 4 – 10), AOT concentration (5 – 150 mM), contact time (5 – 30 min) and phase volume ratio (0.5-5) on the transfer efficiency of jacalin was evaluated by changing one factor at a time (OFAT) while keeping the other parameters constant. A maximum of 83% of protein transfer was achieved after equal volume of organic and aqueous phase was stirred for 20 min using 20 mM AOT at pH 5 aqueous phase containing 0.1 M NaCl. The findings demonstrated AOT reverse micellar system as a promising and effective method to extract and purify jacalin from crude protein mixture.
Effect of Torrefaction Temperature, Residence Time and Particle Size on the Properties of Torrefied Food Waste Ruwaida Abdul Rasid; Thye Mei Chin; Mazni Ismail; Nahsya Nur Udzaifah Abdul Rahman
Indonesian Journal of Chemistry Vol 19, No 3 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (248.519 KB) | DOI: 10.22146/ijc.39718

Abstract

Municipal solid waste (MSW) in Malaysia mainly consists of food waste. As food waste is of organic compounds, its improper management may cause serious environmental issues, as it may produce greenhouse gases and polluting leachate. Alternative management of the food waste is through its utilization. However, the main issue in the utilization of food waste is its heterogeneity, whereby the diversified cooking methods, as well as food origin, emanates different characteristics. Hence, food waste needs to be pre-treated through the torrefaction process, which is a thermochemical method that converts it to biochar at a temperature between 200–300 °C in an inert environment. The main aim of this work is to evaluate the feasibility of food waste as a potential source of energy through the torrefaction process. The torrefaction of food waste was conducted in a vertical tubular reactor under an inert atmosphere. The results obtained from this study showed that as torrefaction temperature became more severe, the produced torrefied solid is more energy-dense, with apparent higher fixed carbon content and improved heating values. These findings imply that food waste may be able to be utilized as a solid biofuel, with fuel properties comparable to conventional fuels.

Page 90 of 199 | Total Record : 1981


Filter by Year

2001 2026


Filter By Issues
All Issue Vol 26, No 1 (2026) Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) ARTICLE IN PRESS Article in press More Issue