cover
Contact Name
Dina Angela
Contact Email
dina_angela@ithb.ac.id
Phone
-
Journal Mail Official
jurnaltelematika@ithb.ac.id
Editorial Address
Jl. Dipati Ukur no. 80-84, Kel. Coblong, Kec. Lebak Gede, Bandung, 40132
Location
Kota bandung,
Jawa barat
INDONESIA
Jurnal Telematika
ISSN : 18582516     EISSN : 25793772     DOI : https://doi.org/10.61769/telematika
Jurnal Telematika is a scientific periodical written in Indonesian language published by Institut Teknologi Harapan Bangsa twice per year. Jurnal Telematika publishes scientific papers from researchers, academics, activist, and practicioners, which are results from scientific study and research in the field of telematics and information technology.
Arjuna Subject : -
Articles 241 Documents
Penerapan You Only Look Once dan DeepSORT untuk Deteksi Plat Nomor Kendaraan Hidayat, Firhat; Billy, Natanael; Permana, Nicholas Russel; Hariady, Matthew Evans
Jurnal Telematika Vol. 19 No. 2 (2024)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i2.676

Abstract

Number plate detection is essential in traffic monitoring, law enforcement, and intelligent transport systems. However, existing methods still have difficulty accurately tracking vehicles in heavy traffic conditions. This study addresses this by combining the YOLOv8 detection model and DeepSORT tracking. Using 453 images from Kaggle, this study analyses the effect of batch size variation and an epoch on model performance. The best model achieved 95.5% precision, 95.1% recall, 98.7% mAP50, and 64.5% mAP95. The integration of YOLOv8 and DeepSORT can improve tracking consistency, reduce ID switching errors, and increase the reliability of the automatic number plate recognition system.
Manajemen Risiko dalam Optimalisasi Keberhasilan Proyek Teknologi Informasi Menggunakan Framework ISO 31000 Ahkmad, Farhat Falfalla; Ilham
Jurnal Telematika Vol. 19 No. 2 (2024)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v19i2.712

Abstract

Penelitian ini mengkaji penerapan framework ISO 31000 dalam manajemen risiko teknologi informasi melalui berbagai studi kasus. Fokus penelitian ini adalah pada identifikasi, analisis, evaluasi, dan penanganan risiko di dalam organisasi, khususnya di sektor perbankan, e-commerce, pemerintahan, dan pendidikan. Melalui pendekatan systematic literature review (SLR), penelitian ini menyintesiskan wawasan dari sepuluh studi kasus yang melibatkan penerapan ISO 31000 dalam mengelola risiko, seperti ancaman siber, kebocoran data, dan gangguan operasional. Hasil penelitian menunjukkan bahwa ISO 31000, ketika dikombinasikan dengan metodologi lain seperti COBIT 5 dan FMEA, memberikan pendekatan yang lebih holistik dalam manajemen risiko dengan memprioritaskan risiko dan mengembangkan strategi mitigasi yang disesuaikan. Penelitian ini juga menyoroti pentingnya pemantauan dan evaluasi berkelanjutan untuk memastikan efektivitas perlakuan risiko. Hasil penelitian mengonfirmasi bahwa penerapan ISO 31000 secara signifikan meningkatkan ketahanan organisasi dan pengambilan keputusan dalam mengelola risiko TI dan memastikan kelangsungan bisnis jangka panjang dan kepercayaan pemangku kepentingan. Penelitian ini memberikan wawasan yang berharga bagi organisasi yang ingin meningkatkan strategi dan framework manajemen risiko TI.
Perancangan Sistem Keamanan Komunikasi Data pada Jaringan LoRA Menggunakan Algoritme PRESENT Hikmaturokhman, Alfin; Ramadhani, Eka Hero; Wulandari, Asri
Jurnal Telematika Vol. 19 No. 2 (2024)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v19i2.674

Abstract

LoRa is a low-power wireless communication technology capable of transmitting data over long distances. LoRa is widely used in embedded systems and the Internet of Things (IoT) in various sectors, such as agriculture, fisheries, industry, transportation, and smart cities. However, the data transmitted through LoRa is not encrypted, so the confidentiality of the data is not guaranteed because the data can be intercepted and read by hackers at the same frequency. Therefore, data encryption techniques are needed in the LoRa system to maintain data confidentiality when transmitted. In this research, a LoRa system is designed, and an analysis of the lightweight PRESENT block cipher algorithm is carried out to secure data communication on the LoRa system. This research uses a LoRa RFM95W module with a 915 MHz frequency and an ATmega328P microcontroller. This research method consists of the stages of literature study, design, implementation, testing, and analysis. After the design and implementation stages, the LoRa system was tested with data transmission test scenarios with test vectors and data communication interception tests. This research shows that the PRESENT algorithm was successfully implemented on the LoRa communication system, and hackers could not read the data sent from LoRa Tx and Rx. The test results also show that implementing the PRESENT algorithm on the LoRa system does not affect data communication performance based on RSSI values. The results of this research can be used in further research in various fields, such as IoT security in agriculture, fisheries, transportation, industry, and smart cities.
Pelacakan Geometri Segitiga dan Lingkaran di Kawasan Tepi untuk Segmentasi Objek Sucipto, Putra Wisnu Agung; Firasanti, Annisa; Bakri, Muhammad Amin; Ekawati, Inna; Yaqin, Khusnul
Jurnal Telematika Vol. 19 No. 2 (2024)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v19i2.717

Abstract

Segmentation of yellow fish egg spheres in digital images often fails due to the difficulty of determining the boundaries between adjacent or overlapping objects. This research proposes a geometry tracking-based segmentation method to solve the problem. This method uses triangulation of three important edge points around the object to determine the initial segment landmarks. Then, it uses their formation to form a complete circle of candidate segments. The set of pixels enveloped by this circle will be examined for shape and colour to be recognised as segments of an object or not. The method was tested on a fish egg image dataset containing more than 5,473 yellow-orange coloured fish egg spheres in 11 digital images. These egg sphere images vary in size, shape, brightness, contrast, density, shadow, noise, light reflection, and blur. Based on the experimental results, the method was able to correctly segment 4,370 egg spheres with 242 false segments and 1,103 undetected spheres. The performance metrics of this method are precision 94.7%, recall 79.8%, IoU 76.5%, and dice coefficient 86.7%.
Penerapan Model Windkessel Dua Elemen pada Simulasi Denyut Jantung Menggunakan Pendekatan Biomodeling Lutfiyani, Zakia; Fiarni, Cut
Jurnal Telematika Vol. 19 No. 2 (2024)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v19i2.694

Abstract

Berangkat dari pembuatan Simulator CABbaGe (Coronary Artery Bypass Grafting) sebagai sarana media pembelajaran bedah jantung koroner yang berkonsep virtual reality, perancangan biomodeling denyut jantung dimulai dengan pendekatan pada perubahan tekanan pulsa di daerah mesh pembentuk obyek jantung yang mengakibatkan perubahan volume jantung, dan berakhir pada perubahan gaya tekan jantung. Dari perancangan tersebut, dieksplorasi untuk mendapatkan hasil yang lebih baik terkait model denyut jantung dengan menggunakan Model Windkessel  Dua Elemen yang mana model ini menggambarkan dinamika tekanan dan aliran darah dalam sistem kardiovaskular dan lebih akurat dalam menggambarkan dinamika aliran darah yang lebih kompleks. Dari hasil pengujian dapat diperoleh kesimpulan bahwa implementasi Model Windkessel Dua Elemen ini cukup efektif untuk memodelkan dan memahami mekanika dasar dari aliran darah dalam sistem kardiovaskular. Selain itu, algoritme dari pemodelan ini cukup sederhana sehingga memudahkan penerapannya dalam simulasi biomodeling denyut sebagai bagian dari upaya membantu pembelajar bedah kardiovaskular menganalisis kinerja jantung secara lebih baik lagi.
Implementasi Algoritme Long Short-Term Memory untuk Prediksi Harga Saham BBCA dan BBRI Zuzzaifa, Nur; Dwi Sancoko, Sulistyo
Jurnal Telematika Vol. 19 No. 2 (2024)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v19i2.701

Abstract

Berinvestasi dalam instrumen saham memiliki tingkat risiko yang tinggi. Hal ini terjadi karena pergerakan saham pada pasar sulit diprediksi. Analisis data historis dapat menjadi solusi para investor dalam meramalkan pergerakan harga saham di masa mendatang. Selain meningkatkan kesadaran akan pentingnya investasi, teknologi juga membantu dalam pengambilan keputusan. Penelitian ini memprediksi harga saham menggunakan algoritme Long Short-Term Memory (LSTM). Data yang digunakan diambil dari website Yahoo Finance, variabel yang digunakan hanya data penutupan (close) saham. Tahapan-tahapan yang dilakukan, seperti studi literatur, pengumpulan data, pembagian data, preprocessing data, pembentukan model, denormalisasi, dan evaluasi. Dari model yang dibangun didapatkan hasil paling optimal pada PT Bank Rakyat Indonesia, Tbk. (BBRI) dengan nilai RMSE data pelatihan sebesar 37,037 dan RMSE data pengujian sebesar 80,128. Sementara itu, pengujian menggunakan algoritme LSTM pada PT Bank Central Asia, Tbk. (BBCA) didapatkan nilai RMSE data pelatihan sebesar 36,905 dan RMSE data pengujian sebesar 99,9. Selanjutnya, model terbaik digunakan untuk memprediksi harga saham PT BCA dan PT BRI dalam sebulan ke depan.
Algoritme Jaringan Syaraf Tiruan pada Perangkat e-Nose untuk Klasifikasi Madu Dwi Syafi'i, Ahmad; Barata, Mula Agung; Rohmah, Roihatur
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.722

Abstract

Penentuan jenis madu merupakan langkah penting guna menjaga keaslian dan mutu produk. Penelitian ini mengembangkan sistem electronic nose berbasis sensor gas MQ-3 dan MQ-135 yang merekam tiga parameter volatil utama, yaitu karbon dioksida, acetone, dan alkohol. Sebanyak 541 sampel data dinormalisasi menggunakan metode min–max, kemudian dibagi dengan skema hold-out 75 persen untuk pelatihan dan 25 persen untuk pengujian. Model klasifikasi menggunakan jaringan syaraf tiruan multilayer perceptron dengan arsitektur 3–7–3, optimizer Adam, laju pembelajaran 0,001, ukuran batch 32, dan 1000 epoch. Hasil pengujian pada 135 sampel uji menunjukkan akurasi keseluruhan sebesar 88,89. Evaluasi per kelas memperlihatkan madu hutan mencapai presisi 100, recall 100, dan F1-score 100, madu budidaya memperoleh presisi 97,1, recall 70,8, dan F1-score 82,1, sedangkan madu trigona mencapai presisi 75,0, recall 97,7, dan F1-score 84,8. Temuan ini menunjukkan bahwa kombinasi e-nose dan JST mampu mengidentifikasi madu dengan tingkat akurasi tinggi, sekaligus membuka peluang penerapan metode ini sebagai sistem deteksi cepat dalam mendukung keaslian produk madu.
Model Deep Learning untuk Face Anti-Spoofing dalam Mengatasi Domain Generalization dengan Depth Estimation dan Generative Adversarial Network Sunoto, Tio Dewantho; Setiadikarunia, Daniel; Saragih, Riko Arlando; Moses, Elia
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.730

Abstract

Penggunaan biometrik wajah untuk memperoleh akses suatu sistem keamanan adalah hal yang lazim ditemukan dalam perangkat komunikasi/komputasi. Walaupun demikian, kemudahan ini berakibat kepada kerentanan terjadinya penerobosan ke dalam sistem keamanan, di mana citra wajah dapat dipalsukan dengan memanfaatkan foto atau video seseorang yang memiliki hak akses. Hal ini dapat diperburuk dengan tersedianya foto atau video seseorang di media sosial. Sistem face anti-spoofing (FAS) adalah suatu sistem yang penting untuk mendeteksi apakah citra masukan adalah citra riil atau citra palsu dalam suatu sistem biometrik yang menggunakan informasi citra wajah. Banyak metode yang sudah digunakan untuk merealisasikan sistem ini, baik dengan pendekatan berbasis metode hand-crafted maupun deep learning (DL). Walaupun demikian, penelitian mengenai perbedaan distribusi antara dataset uji dengan dataset latih masih jarang dilakukan. Artikel ini membahas penggunaan model berbasis deep learning (DL) untuk aplikasi face anti-spoofing (FAS). Penelitian ini mengimplementasikan model menggunakan estimasi peta kedalaman untuk menemukan fitur diskriminatif dan generative adversarial network (GAN) untuk mengatasi isu perbedaan distribusi yang menggunakan pendekatan berupa pembangkitan (pembentukan) data. Untuk model yang diimplementasikan dengan skenario simulasi intraset, hasil pengujian untuk dua dataset publik, yaitu NUAA dan CASIA, memberikan hasil terbaik dari segi metrik half total error rate (HTER), berturut-turut 2,97% dan 2,7%. Sementara simulasi untuk adanya perbedaan antara karakteristik dataset uji dengan dataset latih, hasil dengan menerapkan GAN untuk meningkatkan kemampuan generalisasi model, dapat menurunkan bonafide presentation classification error rate (BPCER) sebesar 9,75%.
Prediksi Besar Daya Listrik dari Gelombang Laut Sawu Menggunakan Bidirectional Long Short-Term Memory (Bi-LSTM) Safira, Icha Dwi; Novitasari, Dian Candra Rini; Ulinnuha, Nurissaidah; Setiawan, Fajar
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.742

Abstract

Several islands in East Nusa Tenggara Province (NTT) are underdeveloped areas with insufficient electrification. Therefore, renewable energy power plants are needed, namely Oscillating Water Column Technology Ocean Wave Power Plants (PLTGL-OWC). The objective of this study is to determine the performance of the bidirectional long short-term memory (Bi-LSTM) method in predicting the potential power generated from the height, length, and period of the Sawu Sea waves in NTT using PLTGL-OWC. This study utilises Sawu Sea wave data collected every 12 hours over 9 months. Bi-LSTM is used in this study because it can overcome the vanishing Gradient problem by utilising both the forward layer and the backward layer, making it more effective in solving complex issues, such as time series prediction. This study conducted tests on hyperparameter batch size and hidden layer node configurations. The smallest mean absolute percentage error (MAPE) prediction values obtained were 9.1943% for the wave height parameter, 11.3585% for the wave length parameter, and 7.1485% for the wave period parameter. It means that the Bi-LSTM method is suitable for predicting the electrical power generated by the PLTGL-OWC in the Sawu Sea, as the height and period parameters fall within the MAPE < 10% category, and the length parameter falls within the MAPE 10-20% category. The average electrical power generated is 2,639,865.948 watts per day over a 31-day period. The Sawu Sea has the potential to serve as a renewable energy source in the NTT region.
Desain Sistem Peringatan Kualitas Udara Menggunakan NodeMCU dan Platform IoT Hermawan, Rangga Bimo; ., Setiyono
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.745

Abstract

Peningkatan polusi udara di berbagai wilayah menuntut adanya sistem pemantauan kualitas udara yang mampu memberikan informasi secara real-time dan mudah diakses oleh masyarakat. Penelitian ini membahas desain sistem peringatan kualitas udara berbasis NodeMCU dan platform Internet of Things (IoT) sebagai solusi pemantauan yang sederhana, murah, dan efisien. Sistem ini dirancang dengan sensor gas (MQ-series) untuk mendeteksi konsentrasi polutan, modul NodeMCU ESP8266 sebagai pengolah data dan penghubung ke jaringan, serta platform IoT Blynk untuk menampilkan data secara daring dalam bentuk grafik, notifikasi, dan indikator status kualitas udara. Hasil pengujian menunjukkan bahwa sistem mampu menampilkan perubahan kualitas udara secara real-time dengan tingkat akurasi yang memadai dibandingkan alat ukur referensi. Sistem juga dapat mengirimkan notifikasi peringatan otomatis saat kualitas udara melewati ambang batas tertentu. Keterbatasan penelitian ini mencakup sensitivitas sensor terhadap lingkungan dan keterlambatan data saat koneksi internet tidak stabil. Penelitian ini masih terbatas pada penggunaan sensor MQ-135, DHT22, dan LDR, sementara indikator kualitas udara internasional mencakup PM2.5, PM10, CO, NO₂, SO₂, dan O₃. Oleh karena itu, diperlukan penambahan sensor partikel debu dan gas spesifik agar sistem lebih representatif terhadap standar WHO sehingga masih terbuka peluang pengembangan agar lebih informatif dan lengkap.