cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta barat,
Dki jakarta
INDONESIA
ComTech: Computer, Mathematics and Engineering Applications
ISSN : 20871244     EISSN : 2476907X     DOI : -
The journal invites professionals in the world of education, research, and entrepreneurship to participate in disseminating ideas, concepts, new theories, or science development in the field of Information Systems, Architecture, Civil Engineering, Computer Engineering, Industrial Engineering, Food Technology, Computer Science, Mathematics, and Statistics through this scientific journal.
Arjuna Subject : -
Articles 1,585 Documents
Comparison of the Symmetric and Asymmetric Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Models in Forecasting the 2018-2023 Jakarta Composite Index Yenni Angraini; Adelia Putri Pangestika; I Made Sumertajaya
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 1 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i1.10610

Abstract

The Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) method assumes a homogeneous residual variance, but data with high volatility can cause violations of this assumption. Hence, it is interesting to compare the forecasting accuracy of symmetric and asymmetric Autoregressive Conditional Heteroskedasticity (ARCH) models in various data conditions. The research aimed to compare the accuracy of the symmetric ARCH/ Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and asymmetric TGARCH models in forecasting weekly Jakarta Composite Index (JCI) data on January 1st, 2018, to April 24th, 2023, by involving the influence of COVID-19 as a covariate variable and applying several validation scenario models to training and testing data. Based on the best-selected model, forecasting was carried out from May 1st, 2023, to July 3rd, 2023. The data used were weekly JCI opening data from January 1st, 2018, to April 24th, 2023, with the COVID-19 period as a covariate variable. The analysis results show that symmetric and asymmetric methods can handle violations of the heteroscedasticity assumption in the ARIMAX model. The best model produced based on four data validation scenarios is the asymmetric ARIMAX(3,1,3)-TGARCH(1,2) model with an average MAPE value of 3.158%. In this model, the COVID-19 variable significantly influences the JCI movement. Forecasting is done with forecasting results that are stable with confidence intervals that widen in each period.
K-Means Clustering to Identity Twitter Build Operate Transfer (BOT) on Influential Accounts M. Khairul Anam; Ike Yunia Pasa; Kartina Diah Kusuma Wardhani; Lusiana Efrizoni; Muhammad Bambang Firdaus
ComTech: Computer, Mathematics and Engineering Applications Vol. 14 No. 2 (2023): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v14i2.10620

Abstract

Twitter is a popular social media with hundreds of millions of users, but some are not human. About 48 million accounts are created by Build Operate Transfer (BOT), which represents up to 15% of all accounts. BOTs are created for various purposes, one of which is to post information about news automatically. However, BOTs have also been abused, such as spreading hoaxes or influencing public perception of a topic. The research aimed to determine which Twitter accounts were identified as BOT accounts based on predefined attributes. The research used tweet data from 213 Twitter accounts. The accounts used as test data were accounts that had influence. After that, the data were clustered using k-means using the attributes of retweets + replies count, followers count, account age, friends count, status count, digits count in name, username length, name similarity, name ratio, and likes count. The results show the optimal number of clustering at k = 3 on the Sum of Squared Errors (SSE) evaluation and the Elbow method and the best quality and cluster power at k = 2 on the silhouette coefficient. It shows that the clustered accounts with the highest number of members on each attribute are places for accounts with high BOT scores from several aspects of the BOT score type.
Enhancing Consumer-to-Consumer (C2C) E-Commerce through Blockchain: A Model-Driven Approach Aditiya Hermawan; Oscar Hasan Putra; Junaedi Junaedi; Yusuf Kurnia; Riki Riki
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 1 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i1.10638

Abstract

The rapid progress of Information and Communication Technology (ICT), especially the Internet, has changed lifestyles in profound ways, including sharing ideas, virtual interactions, digital entertainment, and online transactions. It has resulted in businesses globally turning to electronic commerce (e-commerce) to market products. E-commerce has revolutionized operations with features such as centralized storage and detailed product information in the marketing process. However, the inefficiency and lack of transparency in these centralized systems lead to high costs and limited user control, posing a significant challenge. Challenges include commission fees from E-Commerce providers, which hinder business growth. The research aimed to propose a more efficient and transparent model for Consumer-to-Consumer (C2C) e-commerce using blockchain technology. The C2C model enhanced user transactions and minimized third-party dependence, but centralization increased costs and limited seller access. Thus, a decentralized blockchain approach was proposed for greater transparency in e-commerce. The research innovatively applied blockchain to C2C e-commerce, enhancing market efficiency and transparency. The research method applied was a combination of Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis and practical application. The result shows that the approach succeeds in reducing high costs, transparency of data storage, and dependence on third parties. Blockchain reduces third-party involvement and promotes a fairer business environment because it uses a tamper-proof database for transparency, security, and efficiency in the ever-growing e-commerce ecosystem. Blockchain ensures automated transactions, real-time data tracking, and data security.
Water Quality Monitoring System Based on the Internet of Things (IoT) for Vannamei Shrimp Farming Rosliana Eso; Hasmina Tari Mokui; Arman Arman; Laode Safiuddin; Husein Husein
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 1 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i1.10657

Abstract

As Internet of Things (IoT) technology develops, water quality monitoring systems for Vannamei shrimp farms have become more inventive and straightforward. The prototype IoT system monitors and controls the pool using sensors that can measure water quality parameters, such as temperature, pH, and salinity. The research aimed to design an automated water quality monitoring system for Vannamei shrimp aquaculture. The research used the E-4052C sensor, DS18B20 sensor, and DFRobot V1.0 sensor as data transmitting hardware (transmitter) and the receiving hardware microcontroller NodeMCU ESP32 as data processing, management, and control system tools. Then, the system used a Wi-Fi network to transfer data from the microcontroller to the Message Queue Telemetry Transport (MQTT) server as a data cloud. Several software programs, including Telegram, Node-Red, and ThingSpeak, help Android devices display real-time data. Test results for the accuracy of the sensor’s reading on water pH are 99.71, with an error rate of 0.29%. Meanwhile, the accuracy of the temperature sensor is 98.03 with an error rate of 1.7%. On the other hand, the accuracy of the salinity sensor is 99.49, with an error rate of 0.41%. The results indicate that all sensors have excellent performance. The real-time monitoring display and Android Telegram notification functions are good, and the automatic water quality monitoring tool is successfully operating in the Vannamei shrimp pool in Pamandati, South Konawe District, Southeast Sulawesi ssProvince, Indonesia.
Performance of Fuzzy C-Means (FCM) and Fuzzy Subtractive Clustering (FSC) on Medical Data Imputation Sri Kusumadewi; Linda Rosita; Elyza Gustri Wahyuni
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 1 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i1.11002

Abstract

Missing values or incomplete data are frequently encountered in medical records. These issues will be a serious problem if the data must be provided completely for analysis. The research aimed to prove the performance of the Fuzzy Subtractive Clustering (FSC) and Fuzzy C-Means (FCM) methods for solving imputation problems. Both methods were implemented using medical data. It had been conducted using K-Means as a crisp clustering approach for imputation. In the research, fuzzy clustering—a distinct methodology—was applied. The primary research contribution was the suggested fuzzy logic imputation method, which took uncertainty under consideration. The data sample consisted of patients who were at least 40 years old and had a history of hypertension, diabetes, heart disease, stroke, or chronic kidney disease. The test was carried out by taking random portions of data from the entire medical record. The randomization technique used a probability of 10%–50%. The results of the ANOVA test show that the p-value is greater than ∝(=0.05). It means that the imputed value does not differ from the original value, whether implemented in the FSC or FCM method. The algorithm’s performance is evaluated using the Pearson correlation coefficient. According to the t-test results, the FCM method has a higher correlation coefficient than the FSC method. It implies that FCM is superior to FSC.
Psychological Stress Detection Using Transformer-Based Models Derwin Suhartono; Irfan Fahmi Saputra; Andhika Rizki Pratama; Gabriel Nathaniel
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 1 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i1.11105

Abstract

Stress is a significant mental health problem that results in a lack of concentration. It has been more widely identified through social media since people who are under stress usually post about their physical pain and tiredness. However, stress assessment through social media by professionals can be expensive and time-consuming. The research aimed to produce a stress detection system trained using a Twitter dataset to predict stress using the user’s input sentence. The experiments that were done in the research used transformer-based models such as Bidirectional Encoder Representations from Transformers (BERT) and Robustly Optimized BERT (RoBERTa). The research involved data pre-processing, model training, and model evaluation to ensure high-quality train data. Since the data were imbalanced, data trimming was performed in pre-processing to select data randomly until the balance matched. This process ensured the model’s effectiveness in the training and evaluation stages. The features used in these experiments were features from each pre-trained model. In evaluating the model, accuracy, loss, and F1 score were used as metrics. In the result, for BERT, accuracy reaches 0.848 with an F1 score of 0.847. Meanwhile, RoBERTa has an accuracy of 0.837 and 0.834. The results prove that BERT and RoBERTa can be used to classify stress with accuracy and an F1 score above 0.8. The experiment result shows that the BERT deep learning model can detect stress using the Twitter datasets.
Multiple Classifier System for Handling Imbalanced and Overlapping Datasets on Multiclass Classification Dessy Siahaan; Anwar Fitrianto; Khairil Anwar Notodiputro
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 1 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i1.11295

Abstract

The performance of classification models suffer when the dataset contains imbalanced and overlapping data. These two conditions are already challenging separately and even more complex if they occur together. In the research, an ensemble method called a Multiple Classifier System was proposed to address these issues by combining K-Nearest Neighbour and Logistic Regression. The Synthetic Minority Oversampling Technique (SMOTE) method was also applied to balance the dataset. The One Versus One (OVO) decomposition technique helped the multiclass classification process. A simulation with 18 scenarios proves that the MCS-SMOTE model can handle these problems by providing good performance. The model’s performance is also tested using empirical data on Poverty in West Java in 2021. Empirical data also show that the proposed method performs well, with an accuracy rate of 80.09%, an F1 score of 0.782, and a G-Mean of 0.242. The areas with the highest poverty rates are Bogor, Bekasi City, Bandung City, Bekasi Regency, and Depok City, located near DKI Jakarta, the capital city. Based on existing predictor variables, poor households in West Java are more likely to occur when they do not have access to credit, the number of household members is more than three, multiple families live in one building, and the head of the household has not graduated from elementary school.
Hierarchical Cluster Analysis Based on Waste Sources in Indonesia in 2022 Hidayatullah, Syarif; Sofro, A’yunin
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 2 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i2.11088

Abstract

Waste, as a result of human activities, is a complex issue that requires appropriate solutions. With the increasing volume of waste, waste management in Indonesia has become a major challenge. The research examined the waste problem in Indonesia, focusing on analyzing and grouping 311 regencies/cities based on waste sources in 2022. The research also aimed to provide an in-depth understanding of waste characteristics in each region as a basis for designing more effective waste management policies at the regional level. The research applied hierarchical clustering, combining Ward’s method with Euclidean distance analysis. The analysis shows 14 significant clusters with different waste composition characteristics. Interpretation of the cluster results identifies areas with low to high levels of waste. Clusters 1 to 4 have relatively little waste composition, while clusters 5 to 14 have increasing waste levels, with cluster 14 being an area with very high waste levels. The research results are expected to serve as a basis for the government to formulate more targeted and adaptive policies for handling waste in the future. The implications include improving waste management systems, recycling programs, and community education. By understanding the waste composition of each region, the government can implement solutions that suit its needs. The research provides an overview of the waste problem at the regional level in Indonesia and can be the basis for developing more effective policies. In future research, it is recommended to use more accurate and complete waste data in each regency/city for more in-depth results.
Heat Treatment and Its Effect on Tensile Strength of Fused Deposition Modeling 3D-Printed Titanium-Polylactic Acid (PLA) Darsin, Mahros; Susanti, Rizqa Putri; Sumarji, Sumarji; Ramadhan, Mochamad Edoward; Sidartawan, Robertus; Yudistiro, Danang; Basuki, Hari Arbiantara; Wibowo, Robertoes Koekoeh Koentjoro; Djumhariyanto, Dwi
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 2 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i2.11255

Abstract

Titanium is a biocompatible metal commonly applied in biomedical fields such as bone and dental implants. Recently, the produced titanium-Polylactic Acid (PLA) filament for 3D printing Fused Deposition Modeling (FDM) technique is easier to operate and affordable. This filament contains less than 20% PLA, which is also biocompatible but hydrophobic and capable of producing inflammation of the surrounding artificial living tissue. Therefore, a heat treatment is needed to reduce or even eliminate PLA. The research aimed to optimize the mechanical properties and biocompatibility of titanium-PLA filaments through heat treatment, demonstrating significant advancements in 3D printing applications for biocompatible materials. A Thermogravimetric Analysis (TGA) was carried out to find out the right temperature for reducing PLA levels. Specimens were heat treated with four temperatures at 100oC, 160oC, 190oC, and 543oC, and two holding times of 60 and 120 minutes. The mass of the specimens was weighed before and after heat treatment to determine the mass reduction and tested for tensile, micrograph, and fractography observation. The result is a meagre mass reduction. The highest tensile strength of the heat-treated specimen with a heat treatment temperature of 160oC and a holding time of 60 minutes is 18.310 MPa. However, it is still below the strength of the non-heat treated specimen, 19.890 MPa. Specimens with low tensile strength have a microstructure that shows an uneven distribution of titanium particles. Last, fractography shows porosity in the specimens with the lowest tensile strength.
Model Prediction Using Artificial Neural Network (ANN) to Strengthen Diagnostic Analysis of Diabetes Melitus Kurniawan, Deddy; Wulansari, Tina Tri; Febrianti, Niken Ayu Dwi
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 2 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i2.11905

Abstract

The incidence of Diabetes Mellitus (DM) is one of the urgent and increasing health issues every year. Hence, this condition requires high urgency to be handled. The research aimed to develop a prediction model for DM that could be used in general for the purpose of diagnostic analysis of DM cases against suspected individuals. The dataset was sourced from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), which had closely related parameters in diagnostic analysis without favoring certain groups. The targeted contribution was the result of a new prediction model that was specifically tested on the dataset using the Artificial Neural Network (ANN) algorithm. This model was developed through a baseline model that was tested and improved in performance through hyperparameter cross-validation therapy and L1 regularization. The formation of the model architecture through experiments to adjust the conditions of hidden layers and neurons in several configurations results in a model architecture with 8 input parameters. It contains 3 hidden layers with a total of 14, 20, and 26 neurons, with the ReLU activation function on each hidden layer and the Sigmoid activation function on the output part. The second test is carried out on a hyperparameter configuration. It produces maximum performance with a k-fold value of 10 and L1 regularization of 0.0001. The model performance results obtain an accuracy value of 0.947, precision of 0.895, recall of 0.914, and model loss of 0.215

Filter by Year

2010 2025


Filter By Issues
All Issue Vol. 16 No. 2 (2025): ComTech Vol. 16 No. 1 (2025): ComTech Vol. 15 No. 2 (2024): ComTech Vol. 15 No. 1 (2024): ComTech Vol. 14 No. 2 (2023): ComTech Vol. 14 No. 1 (2023): ComTech Vol. 13 No. 2 (2022): ComTech Vol. 13 No. 1 (2022): ComTech Vol. 12 No. 2 (2021): ComTech Vol. 12 No. 1 (2021): ComTech Vol. 11 No. 2 (2020): ComTech Vol. 11 No. 1 (2020): ComTech Vol 11, No 1 (2020): ComTech (Inpress) Vol 10, No 2 (2019): ComTech Vol. 10 No. 2 (2019): ComTech Vol 10, No 1 (2019): ComTech Vol. 10 No. 1 (2019): ComTech Vol 10, No 1 (2019): ComTech (In Press) Vol 9, No 2 (2018): ComTech Vol. 9 No. 2 (2018): ComTech Vol 9, No 2 (2018): ComTech Vol 9, No 1 (2018): ComTech Vol 9, No 1 (2018): ComTech Vol. 9 No. 1 (2018): ComTech Vol 8, No 4 (2017): ComTech Vol. 8 No. 4 (2017): ComTech Vol 8, No 4 (2017): ComTech Vol 8, No 3 (2017): ComTech Vol 8, No 3 (2017): ComTech Vol. 8 No. 3 (2017): ComTech Vol. 8 No. 2 (2017): ComTech Vol 8, No 2 (2017): ComTech Vol 8, No 2 (2017): ComTech Vol 8, No 1 (2017): ComTech Vol. 8 No. 1 (2017): ComTech Vol 8, No 1 (2017): ComTech Vol 7, No 4 (2016): ComTech Vol 7, No 4 (2016): ComTech Vol. 7 No. 4 (2016): ComTech Vol. 7 No. 3 (2016): ComTech Vol 7, No 3 (2016): ComTech Vol 7, No 3 (2016): ComTech Vol. 7 No. 2 (2016): ComTech Vol 7, No 2 (2016): ComTech Vol 7, No 2 (2016): ComTech Vol. 7 No. 1 (2016): ComTech Vol 7, No 1 (2016): ComTech Vol 7, No 1 (2016): ComTech Vol 6, No 4 (2015): ComTech Vol 6, No 4 (2015): ComTech Vol. 6 No. 4 (2015): ComTech Vol. 6 No. 3 (2015): ComTech Vol 6, No 3 (2015): ComTech Vol 6, No 3 (2015): ComTech Vol 6, No 2 (2015): ComTech Vol 6, No 2 (2015): ComTech Vol. 6 No. 2 (2015): ComTech Vol 6, No 1 (2015): ComTech Vol. 6 No. 1 (2015): ComTech Vol 6, No 1 (2015): ComTech Vol 5, No 2 (2014): ComTech Vol. 5 No. 2 (2014): ComTech Vol 5, No 2 (2014): ComTech Vol 5, No 1 (2014): ComTech Vol. 5 No. 1 (2014): ComTech Vol 5, No 1 (2014): ComTech Vol 4, No 2 (2013): ComTech Vol 4, No 2 (2013): ComTech Vol. 4 No. 2 (2013): ComTech Vol. 4 No. 1 (2013): ComTech Vol 4, No 1 (2013): ComTech Vol 4, No 1 (2013): ComTech Vol 3, No 2 (2012): ComTech Vol. 3 No. 2 (2012): ComTech Vol 3, No 2 (2012): ComTech Vol 3, No 1 (2012): ComTech Vol. 3 No. 1 (2012): ComTech Vol 3, No 1 (2012): ComTech Vol 2, No 2 (2011): ComTech Vol. 2 No. 2 (2011): ComTech Vol 2, No 2 (2011): ComTech Vol 2, No 1 (2011): ComTech Vol 2, No 1 (2011): ComTech Vol. 2 No. 1 (2011): ComTech Vol 1, No 2 (2010): ComTech Vol. 1 No. 2 (2010): ComTech Vol 1, No 2 (2010): ComTech Vol. 1 No. 1 (2010): ComTech Vol 1, No 1 (2010): ComTech Vol 1, No 1 (2010): ComTech More Issue