cover
Contact Name
Siti Nurmaini
Contact Email
comengappjournal@unsri.ac.id
Phone
+6285268048092
Journal Mail Official
comengappjournal@unsri.ac.id
Editorial Address
Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universtas Sriwijaya, KampusUnsri Bukit Besar, Palembang
Location
Kab. ogan ilir,
Sumatera selatan
INDONESIA
ComEngApp : Computer Engineering and Applications Journal
Published by Universitas Sriwijaya
ISSN : 22524274     EISSN : 22525459     DOI : 10.18495
ComEngApp-Journal (Collaboration between University of Sriwijaya, Kirklareli University and IAES) is an international forum for scientists and engineers involved in all aspects of computer engineering and technology to publish high quality and refereed papers. This Journal is an open access journal that provides online publication (three times a year) of articles in all areas of the subject in computer engineering and application. ComEngApp-Journal wishes to provide good chances for academic and industry professionals to discuss recent progress in various areas of computer science and computer engineering.
Articles 318 Documents
Deforestation Analysis in Taba Penanjung District with NDVI Vatresia, Arie; Utama, Ferzha Putra; Rais, Rendra Regen; Prasetyo, Bimo
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Forests are cleared to expand residential areas and plantations or change the allocation of forest land to non-forest (deforestation). This study aims to create a map of the condition of the forest area and find out the areas affected by deforestation and determine the rate of change in the forest area in the Taba Penanjung District forest area. First data on Landsat 8 images geometric correction performed to position image data so that it matches the actual coordinates and performing Radiometric Correction is used to correct if an error or distortion occurs due to imperfect operation and sensors. NDVI Method is the method used for comparing the greenness of vegetation in satellite imagery, which uses band 4 (Red) and band 5 (NIR), which is processed by ArcMap software. The results of this study produced a map of the condition of forest areas and the area of land affected by deforestation. Forest turn-over rates were described in the annual trend from 2013 to 2018. Furthermore, this research shows that deforestation in the Taba Penanjung district has happened in 58% of the total area of 23, 747 ha. Although the deforestation has decreasing value in 2015 by 1.6%, it showed that there were increasing values in deforestation rate in 2014, 206, 2017 by 1.4%, 1.9%, and 9.5% respectively from the total area of 23, 747 ha.
Multiclass Segmentation of Pulmonary Diseases using Convolutional Neural Network Arnaldo, Muhammad; Nurmaini, Siti; Satria, Hadipurnawan; Rachmatullah, Muhammad Naufal
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pulmonary disease has affected tens of millions of people in the world. This disease has also become the cause of death of millions of its sufferers every year. In addition, lung disease has also become the cause of other respiratory complications, which also causes the death of the sufferer. The diagnosis of pulmonary diseases through medical imaging is a significant challenge in computer vision and medical image processing. The difficulty is due to the wide variety in infected areas' shape, dimension, and location. Another challenge is to differentiate one lung disease from the other. Discriminating pulmonary diseases is a notable concern in the diagnosis of pulmonary disease. We have adopted the deep learning convolutional neural network in this study to address these challenges. Seven models were constructed using the Mask Region-based Convolutional Neural Network (Mask-RCNN) architecture to detect and segment infected areas within the lung region from CT scan imagery. The evaluation results show that the best model obtained scores of 91.98%, 85.25%, and 93.75% for DSC, MIoU, and mAP, respectively. The segmentation results are then visualized.
Identification of Indonesian Authors Using Deep Neural Networks Firdaus; Fahreza, Irvan; Nurmaini, Siti; Darmawahyuni, Annisa; Sapitri, Ade Iriani; Rachmatullah, Muhammad Naufal; Lestari, Suci Dwi; Fachrurrozi, Muhammad; Afrina, Mira; Putra, Bayu Wijaya
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Author Name Disambiguation (AND) is a problem that occurs when a set of publications contains ambiguous names of authors, i.e. the same author may appear with different names (synonyms) in other published papers, or author (authors) who may be different who may have the same name (homonym). In this final project, we will design a model with a Deep Neural Network (DNN) classifier. The dataset used in this final project uses primary data sourced from the Scopus website. This research focuses on integrating data from Indonesian authors. Parameters accuracy, sensitivity and precision are standard benchmarks to determine the performance of the method used to solve AND problems. The best DNN classification model achieves 99.9936% Accuracy, 93.1433% Sensitivity, 94.3733% Precision. Then for the highest performance measurement, the case of Non Synonym-Homonym (SH) has 99.9967% Accuracy, 96.7388% Sensitivity, and 97.5102% Precision.
Point of Interest (POI) Recommendation System using Implicit Feedback Based on K-Means+ Clustering and User-Based Collaborative Filtering Setiowati, Sulis; Adji, Teguh Bharata; Ardiyanto, Igi
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Recommendation system always involves huge volumes of data, therefore it causes the scalability issues that do not only increase the processing time but also reduce the accuracy. In addition, the type of data used also greatly affects the result of the recommendations. In the recommendation system, there are two common types of data namely implicit (binary) rating and explicit (scalar) rating. Binary rating produces lower accuracy when it is not handled with the properly. Thus, optimized K-Means+ clustering and user-based collaborative filtering are proposed in this research. The K-Means clustering is optimized by selecting the K value using the Davies-Bouldin Index (DBI) method. The experimental result shows that the optimization of the K values produces better clustering than Elbow Method. The KMeans+ and User-Based Collaborative Filtering (UBCF) produce precision of 8.6% and f-measure of 7.2%, respectively. The proposed method was compared to DBSCAN algorithm with UBCF, and had better accuracy of 1% increase in precision value. This result proves that K-Means+ with UBCF can handle implicit feedback datasets and improve precision.
Performance Evaluation on Applied Low-Cost Multi-Sensor Technology in Air Pollution Monitoring Handayani, Ade Silvia; Husni, Nyayu Latifah; Permatasari, Rosmalinda
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 3 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research aims to discuss the application of multi-sensor network technology for the monitoring of indoor air pollution. Indoor air pollution has become a severe problem that affects public health, especially indoor parking. The indoor air pollution monitoring system will provide information about vehicle exhaust emission levels. We have improved the system to identify six parameters of the vehicles' gas emissions within a different location at once. This research aimed to measure the parameter of Carbon Monoxide (CO), Carbon Dioxide (CO2), Hydro Carbon (HC), temperature and humidity, and levels of particulates in the air (PM10). The performance of this system shows good ability to compare the results of measurements of air quality measuring professionals. In this study, we investigated the performance of a custombuilt prototype developed under the android-based application to detect air pollution levels in the parking area. Our objective was to evaluate the suitability of a low-cost multi-sensor network for monitoring air pollution in parking and the other area. The benefit of our approach is that its time and space complexity make it valuable and efficient for real-time monitoring of air pollution.
Automated Continuous IoT-Based Monitoring System for Vaname Shrimp Cultivation Management Syauqy, Dahnial; Hanggara, Buce Trias; Purnomo, Welly; Putra, Widhy Hayuhardhika Nugraha; Prasetya, Nyoman Wira
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Shrimp cultivation in Indonesia has been increasing since the introduction of white leg shrimp or often known as vaname (Penaeus vannamei) from the South Pacific waters. The use of a cultivation model with a circular pond with a diameter of 10 meters has begun to attract shrimp farmers in the northern coastal areas of Java, including Tuban Regency. There are several water quality parameters that affects survival rate such as Dissolved Oxygen (DO), Temperature, and Total Dissolved Solids (TDS). Shrimp pond farmers in Tuban Regency have used digital measuring tools to monitor the environmental conditions. However, these measurements cannot be carried out continuously for 24 hours. This often causes delays in identifying problems that occur in ponds and eventually impacts on reducing biomass weight, resulting in not achieving harvest targets. In this study, a continuous monitoring system for water quality management was designed and implemented. The system consists of an IoT-based water quality monitoring device combined with a Shrimp Aquaculture Management Information System. Based on the system that has been built, it is found that the system has been able to acquire all sensor parameters and send them to the server. The results of calibration and prediction using linear regression show that the average data reading error is achieving 14% for DO sensors, and 1% each for temperature and TDS sensors. The aggregated data is presented in tabular and graphic formats so that daily monitoring and predictions can be carried out in ponds.
Segmentation of the Lungs on X-Ray Thorax Image with CNN Architecture U-Net Pranata, Teddi; Desiani, Anita; Suprihatin, Bambang; Hanum, Herlina; Efriliyanti, Filda
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Lungs are one of the most important parts of the human body. They are very susceptible to various disorders and diseases. For this reason, it is necessary to detect or diagnose the lungs. In this study, we present a method for lung segmentation using the CNN method U-Net architecture. The initial stage was preprocessed did a 1-1 correspondence to equalize the amount of training data and testing data and resized the image so all images have the same size. The process continued with the CLAHE (Contrast Limited Adaptive Histogram Equalization), and after that, the segmentation process was carried out according to the method. This study used a dataset from the Kaggle website. The results used the CNN method of the U-Net architecture in data get an average accuracy of 91.68%, sensitivity 92.80%, and specificity 89.15%, precision 95.07, and F1-Score 93. 92%. Based on the performance evaluation results, it was concluded that the method proposed in the study is great and valid in the lungs segmentation on X-Ray Thorax images.
Performance Comparison of Feature Face Detection Algorithm on The Embedded Platform Zarkasi, Ahmad; Nurmaini, Siti; Stiawan, Deris; Suprapto, Bhakti Yudho; Ubaya, Huda; Kurniati, Rizki
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The intensity of light will greatly affect every process carried out in image processing, especially facial images. It is important to analyze how the performance of each face detection method when tested at several lighting levels. In face detection, various methods can be used and have been tested. The FLP method automates the identification of the location of facial points. The Fisherface method reduces the dimensions obtained from PCA calculations. The LBPH method converts the texture of a face image into a binary value, while the WNNs method uses RAM to process image data, using the WiSARD architecture. This study proposes a technique for testing the effect of light on the performance of face detection methods, on an embedded platform. The highest accuracy was achieved by the LBPH and WNNs methods with an accuracy value of 98% at a lighting level of 400 lx. Meanwhile, at the lowest lighting level of 175 lx, all methods have a fairly good level of accuracy, which is between 75% to 83%.
Detection of Diabetic Retinopathy Using Convolutional Neural Network (CNN) Yazid, Rizq Khairi; Samsuryadi
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 3 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

One of the complications of Diabetes Mellitus, namely Diabetic Retinopathy (DR) damages the retina of the eye and has five levels of severity: Normal, Mild, Medium, Severe and Proliferate. If not detected and treated, this complication can lead to blindness. Detection and classification of this disease is still done manually by an ophthalmologist using an image of the patient's eye fundus. Manual detection has the disadvantage that it requires an expert in the field and the process is difficult. This research was conducted by detecting and classifying DR disease using Convolutional Neural Network (CNN). The CNN model was built based on the VGG-16 architecture to study the characteristics of the eye fundus images of DR patients. The model was trained using 4750 images which were rescaled to 256 X 256 size and converted to grayscale using the BT-709 (HDTV) method. The CNN-based software with VGG- 16 architecture developed resulted in an accuracy of 62% for the detection and classification of 100 test images based on five DR severity classes. This software produces the highest Sensitivity value in the Normal class at 90% and the largest Specificity value in the Mild class at 97.5%.
Brahmi Script Classification using VGG16 Architecture Convolutional Neural Network Vincen; Samsuryadi
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Many Indonesians have difficulty reading and learning the Brahmi script. Solving these problems can be done by developing software. Previous research has classified the Brahmi script but has not had an output that matches the letter. Therefore, letter classification is carried out as part of the process of recognizing Brahmi script. This study uses the Convolutional Neural Network (CNN) method with the VGG16 architecture for classifying Brahmi script writing. Training results from various amounts of image data. Smooth model. The requested image data is a 224x224 binary image. This study has the highest quality, accuracy is 96%, highest recall is 98% and highest precision is 98%.