cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
triwiyanto123@gmail.com
Editorial Address
Pucang Jajar Timur No. 10, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
ISSN : -     EISSN : 26568624     DOI : https://doi.org/10.35882/ijeeemi
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics (IJEEEMI) publishes peer-reviewed, original research and review articles in an open-access format. Accepted articles span the full extent of the Electronics, Biomedical, and Medical Informatics. IJEEEMI seeks to be the world’s premier open-access outlet for academic research. As such, unlike traditional journals, IJEEEMI does not limit content due to page budgets or thematic significance. Rather, IJEEEMI evaluates the scientific and research methods of each article for validity and accepts articles solely on the basis of the research. Likewise, by not restricting papers to a narrow discipline, IJEEEMI facilitates the discovery of the connections between papers, whether within or between disciplines. The scope of the IJEEEMI, covers: Electronics: Intelligent Systems, Neural Networks, Machine Learning, Fuzzy Systems, Digital Signal Processing, Image Processing, Electromedical: Biomedical Signal Processing and Control, Artificial intelligence in biomedical imaging, Machine learning and Pattern Recognition in a biomedical signal, Medical Diagnostic Instrumentation, Laboratorium Instrumentation, Medical Calibrator Design. Medical Informatics: Intelligent Biomedical Informatics, Computer-aided medical decision support systems using heuristic, Educational computer-based programs pertaining to medical informatics
Articles 199 Documents
Brake Current Control System Modeling Using Linear Quadratic Regulator (LQR) and Proportional integral derivative (PID) Nugraha, Anggara Trisna; Pratiwi, Oktavinna Dwi; As’ad, Reza Fardiyan; Athavale, Vijay Anant
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 2 (2022): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.141

Abstract

In the automotive world, each engine has different characteristics and functions, such as engine power, engine torque, and engine fuel emissions. Therefore, the power meter is used as a tool that can provide information about the engine characteristics. To ensure optimal braking performance of the dynamometer.is use eddy current braking dynamometer. his paper provides a comparative analysis between PID control as a classical control technique and modern control technique in the dynamometer eddy current brakes system. Eddy current brakes is a modern braking system that requires a control system to support the braking performance. PID control is often used to be implemented but, in some conditions, it is less optimal. This paper aims to find out that LQR and PID can support the performance of the Eddy current brakes dynamometer. And also to find out that LQR is better and optimal than PID controller for braking time response on Eddy current brakes dynamometer. Therefore, it is necessary to develop a modern and optimal control, such as a full state feedback Linear Quadratic Regulator (LQR). The expected result of the research is to produce a control design for the Eddy current brakes dynamometer system using the LQR control method. So that it can be used for the development of the automotive world and is beneficial for the survival of the communityThe comparison of the braking time responses were simulated using Matlab/Simulink. The simulation results show that the response of LQR control is better than the PID, with Ts = 2.12 seconds, Tr = 1.18 seconds, and without overshoot. On the other side, PID control, although having Ts = 0.27 seconds and Tr = 0.18 seconds, there is still an overshoot about 0.7%.
Analysis of Tube Leakage of X-Ray Radiation Using Geiger Muller Sensor Equipped with Data Storage Utomo, Bedjo; Indrato, Tribowo; Gumiwang, Her; Mudjiono, Urip; Ardiansyah, Bayu; Hossain, A K M Bellal; Wongpituk, Klarnarong
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 2 (2022): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.142

Abstract

X-ray radiation (ionization) cannot be felt directly by the five human senses. Therefore, radiation monitoring is needed, one of which by using a survey meter. The purpose of this research is to directly monitor the level of radiation exposure and leakage of X-ray tube containers in the work area. This was done to ensure the safety and health of workers in the radiation transmission area, so that it is in accordance with the ALARA (As Low As Reasonably Achievable) principle, which is stipulated in the Decree of the Minister of Health RI No. 1250/Menkes/SK/XII/2009 concerning Guidelines for Quality Control of Radiodiagnostic Equipment as Standard Values ​​for X-Ray Radiation Monitoring. This research is an experimental study with a survey meter equipment module design using a Geiger Muller sensor equipped with data storage. This module design method uses Arduino programming as data processing and is displayed on the CHARACTER LCD. Test analysis was carried out by comparing the measurement value of the module with the standard value as a standard for comparison. Based on the measurement results, the X-ray tube leak test value resulted in a standard AAT survey meter value of 0.001 both using a closed and unsupplied 2mm Pb circuit, namely 0.00097 mGy/hour and 0.00092 mGy/hour. Meanwhile, the results of the tube leakage test using a survey meter, both circuits, modules, and standard survey meters show a passing grade test value of < 1mGy/hour. In conclusion, the module design using the Geiger Muller sensor is feasible to use.
Analysis of Changes in Flow Setting Against Rise Time Using Gas Board 7500E Sensor on Bubble CPAP Pudji, Andjar; Amrinsani, Farid; Luthfiyah, Sari; Lusiana, Lusiana; Misra, Shubhrojit; Ahniar, Nur Hasanah; Barus, Yenda Mita; Lamidi , Lamidi
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 2 (2022): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.143

Abstract

Respiratory distress syndrome (RDS) is a breathing disorder that occurs in newborns, often in premature babies born before 28 weeks of gestation. The bubble CPAP (Continuous Positive Airways Pressure) is a device used to provide positive pressure to newborns who can breathe spontaneously but are still prone to apnoea. The rise time is the time it takes for the airway pressure to reach the maximum standard value. The aim of this study is to analyze the changes in flow regulation during the rise time using a 7500E gas sensor card on a bubble CPAP probe. The method used in this study is to use the mean hijacking of the sensor to reduce the noise generated by the sensor. When analyzing the data, the researcher recorded data up to five times and calculated the mean measurement error. The research design is calibrated to confirm the correctness of the displayed values. The results of the data analysis are a mean error value of 0.88% at a setting of 30% oxygen content, 0.78% at a setting of 50%, and 0.95% at a setting of 90%. For liters per minute (LPM) at the 1 LPM and 5 LPM settings, the mean error values are 0.18 % and 0.03 % for the 10 LPM setting. From the test results with 3 bubble CPAP devices, it appears that when a high LPM setting is used, the oxygen concentration is reached faster with a mean value of ±10 seconds. The conclusion from this study shows that increasing the oxygen flow rate affects the duration of the rise in bubble CPAP oxygen concentration. The implication of this study is that this data will help add artificial intelligence to bubble CPAP to automatically determine settings by combining breathing data from patients.
Improving Heart Rate Measurement Accuracy by Reducing Artifact Noise from Finger Sensors Using Digital Filters Maghfiroh, Anita Miftahul; Soetjiatie, Liliek; Irianto, Bambang Guruh; Triwiyanto , Triwiyanto; Hidayanti, Nuril; Rizal, Achmad
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 2 (2022): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.144

Abstract

Heart rate is an important indicator in the health sector that can be used as an effective and rapid evaluation to determine the health status of the body. Motion or noise artifacts, power line interference, low amplitude PPG, and signal noise are all issues that might arise when measuring heart rate. This study aims to develop a digital filter that reduces noise artifacts on the finger sensor to improve heart rate measurement accuracy. Adaptive LMS and Butterworth are the two types of digital filters used in this research. In this study, data were collected from the patient while he or she was calm and moving around. In this research, the Nellcor finger sensor was employed to assess the blood flow in the fingers. The heart rate sensor will detect any changes in heart rate, and the measurement results will be presented on a personal computer (PC) as signals and heart rate values. The results of this investigation showed that utilizing an adaptive LMS filter and a Butterworth low pass filter with a cut-off frequency of 6Hz, order 4, and a sampling frequency of 1000Hz, with the Butterworth filter producing the least error value of 7.57 and adaptive LMS maximum error value of 27.65 as predicted by the researcher to eliminate noise artifacts. This research could be applied to other healthcare equipment systems that are being monitored to increase patient measurement accuracy.
Analysis of the Effect of Red LED and Infrared Flip Flop Frequency on SpO2 Measurement Accuracy T P, Moch Prastawa Assalim; Titisari, Dyah; Prakoso, Bagas Angger; Caesarendra, Wahyu
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 2 (2022): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.145

Abstract

Oxygen saturation is a vital parameter for the early detection of advanced oxygen deficiency. Spo2 is a tool that measures the amount of oxygen in the blood non-invasively. This equipment consists of ophotodiodeiode as a sensor as well as red and infrared LEDs with a flip flop driver circuit that has a certain frequency. In this case, several research projects and equipment on the market have various flip flop frequencies. This research aims to find the best frequency setting value for red and infrared led drivers on SpO2 devices. In this research, a SpO2 that can be adjusted with a flip flop frequency of 400 Hz to 1400 Hz was designed. The SPO2 reading from the sensor is presented on the OLED LCD panel using Arduino Mega as a data processor from the driver frequency output controller. Frequency adjustment for sensor drivers is also at 400 Hz to 1400 Hz. This tool was further used to measure the frequency variation of the flip flop. The measurement results on the subject's finger were then compared with the results of the standard SpO2 tool to see the effect of the frequency value on the level of accuracy of the tool. The results of the comparison data processing showed that the largest error of 0.35% occurred in the SPO2 measurement using the 600 Hz sensor frequency driver, and the smallest error value of 0.07%, occurred in the use of the driver frequency at 1400Hz. These results can be used in the initial design of the production of SpO2 equipment, the higher the frequency, the more accurate it will be. This study only discusses the frequency, whereas the intensity parameters of the red and infrared LEDs also vary.
Analysis of Drop Sensor Accuracy in Central Infusion Peristaltic Monitoring Based on Computer Using Wireless Communication HC-11 Syaifudin, Syaifudin; Rahmawati, Triana; Jannah, Siti Rohmatul; Gupta, Sandeep Kumar; Gopal, Ram
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 2 (2022): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.146

Abstract

In some hospitals, the infusion is still done manually, where medical personnel observe the liquid droplets directly and then control the rate using a mechanical resistor (clamp). This method is certainly far from accurate. An infusion pump is a medical aid that functions to control and ensure the correct dose of infusion fluid given to patients treated. The purpose of this study was to analyze the accuracy of the infrared photodiode as a drop sensor based on the readings of the infusion pump monitoring system. This module consists of a photodiode infrared drop sensor module, a comparator circuit, a monostable circuit, a stepper motor, an L298N motor driver, and an ATmega328 microcontroller. The droplets were detected by an infrared photodiode sensor, then compared with a comparator and monostable circuit as an oscillator developer, and then the flow rate and residual volume readings were generated by the ATmega328 microcontroller. Next, this data has sent to the computer via the HC-11 wireless. The results of the flowrate module measurement show the highest error value of 3% at the 30 ml/hour setting and the lowest error value of 2.5% at the 60 ml/hour setting. Meanwhile, the results of the flow rate measurement using an infusion device analyzer obtained the highest error value of 4% at the setting of 30 ml/hour and 60 ml/hour, and the lowest error value of 0.8% at the setting of 100 ml/hour. Monitoring the infusion pump was designed centrally to facilitate the nurse's task in monitoring the infusion dose given to the patient accurately. Based on this research, the accuracy of the infrared sensor and photodiode is very good by looking at the existing error rate.
A Low Cost Electrosurgery Unit (ESU) Design with Monopolar and Bipolar Methods Irianto, Bambang Guruh; Wakidi, Levana Forra; Endarta, Ade Ryan; Adam, Madeha Ishag; Aamir, Hafsa
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 2 (2022): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.147

Abstract

Surgery using a conventional scalpel causes the patient to lose a lot of blood; this needs to be avoided. The purpose of this research is to make a replacement for the conventional scalpel using a device that utilizes high frequency with a duty cycle setting that is centered at one point. The design of the device is equipped with monopolar and bipolar pulse selection with an increased frequency at 400 kHz, where the duty cycle of bipolar mode can be set to 100% on and the coagulation duty cycle is 6% on and 94% off. The power output of the module was tested using an ESU Analyzer, while cutting the bipolar forceps used soap and meat media. The power inverter circuit was set with the module impedance values ​​of 300Ω, 400Ω, and 500Ω. Power settings were set at high, medium, and low with 2 pulse cutting and coagulation modes. The average power resulted in the lowest power of 32.3Watt and the highest power cutting mode of 58.3Watt. Meanwhile, in the coagulation mode of the lowest power of 3Watt and the highest power of 3Watt, the impedance setting is 500Ω. The module can output power linearly according to settings and can cut media well. Furthermore, the development of making Electrosurgery design in this study is expected to facilitate the surgical process during the surgical procedures.
Analysis of the Capture Output on Flat Panel Detector using Arduino-Based BPW34 Photodiode Sensor with mA and kV Setting Parameters Amin, M. R.; Wahyudi, M. F.; Mak’ruf, M. R.; Indrato, T. B.; Pudji, A.; Palanisamy, S.
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 3 (2022): August
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.148

Abstract

The exposure factor is the factor that determines the intensity and quality of X-rays received by the patient. Exposure factors that can be controlled are tube voltage (kV), tube current (mA), irradiation time (second), and distance of the X-ray tube to the film (FFD). The purpose of this study was to capture X-rays at a relatively affordable manufacturing price and to obtain different value from the detector's capture between dark and light by utilizing the response of the BPW34 photodiode sensor. The contribution of this study is that the system can display grayscale and numerical on an 8x8 pixel matrix using the Matrix Laboratory (MATLAB) Application. This study was able to convert images taken from analog data after taking measurements on X-rays. The measurements were carried out by 2 methods, the range used was 32-63 mA with a tube voltage of 50 kV at an irradiation duration of 1 second and 50 - 70 kV with a tube current of 40 mA and an irradiation duration of 1 second. Based on the measurement results, the comparison between the Flat Panel Detector Design Tool and the Philips brand Digital Radiography obtained that the latter was able to respond to differences in dose and object thickness. The results of this study indicated that this tool could be used to capture X-rays so that the degree of blackness of the film were obtained
Effect of Muscle Fatigue on Heart Signal on Physical Activity with Electromyogram and Electrocardiogram Monitoring Signals Fauzi, Muhammad; Yulianto, Endro; Irianto, Bambang Guruh; Luthfiyah, Sari; Triwiyanto, Triwiyanto; Shankhwar, Vishwajeet; Elbaghazaoui, Bahaa Eddine
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 3 (2022): August
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.149

Abstract

Physical activity is an activity of body movement by utilizing skeletal muscles that are carried out daily. One form of physical activity is exercise which aims to improve health and fitness. Parameters related to health and wellness are heart and muscle activity. Strong and prolonged muscle contractions result in muscle fatigue. The authors used electromyographic (EMG) signals to measure muscle fatigue by monitoring changes in electrical muscle activity. This study aims to analyze the effect of muscle fatigue on cardiac signals during subjects perform physical activity. This research method uses Fast Fourier Transform (FFT) with one group pre-test-post-test research design. The independent variable is the EMG signal when doing plank activities, while the dependent variable is the result of monitoring the EMG signal. The authors use MPF, MDF, and MNF to get more detailed measurement results and perform a T-test. The test results showed a significant value (p-value <0.05) in the pre-test and post-test. The Pearson correlation test got a value of 0.628, indicating a strong relationship between exercise frequency and plank duration. When the respondent experiences muscle fatigue, the heart signal is affected by noise movement artifacts that appear when doing the plank. It is concluded that the device in this study can be used properly. To overcome noise in the EMG signal, it is recommended to use dry electrodes and high-quality components. To improve the ability to transmit data, it is recommended to use a Raspberry microcontroller.
Utilization of High-Power LEDs at Low-Cost Non-Invasive X-ray KV Meter Detectors Design I, M. Bagus F.; P, Moch Prastawa A T; Setiawan, S Y; Lamidi, Lamidi; Hariwisana, I D G; Indrato, T B; Asghari, Mansour
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 3 (2022): August
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.150

Abstract

X-ray radiation is used to diagnose human body. In order to apply this method, two parameters are commonly used as the settings. The first is the KV value and the second is the mA value. In this case, when an error occurs in the kV setting, it will cause poor image quality, thus leads to inaccurate information in patient’s examination. It is likewise the presence of excessive doses to the patient's body. To ensure that the KV value produced is under the settings on the machine consul, both invasive and non-invasive measurements were carried out. Non-invasive is becoming an easy standard to do. Several types of equipment on the market and research results have been widely used for this non-invasive activity. The problem emerges is that the existing tools still use expensive detectors. The purpose of this study was to design a low-cost non-invasive x-ray KV meter detector using an LED detector whose ability was tested at each point of collimation. Furthermore, the method used in this study was to stump the detectors at 4 ends of the collimation by 20 cm apart. The data were taken by doing x-ray exposure at a distance of 60 cm. The module measurements were carried out under 80 mA exposure conditions for 1 second and a collimation area of ​​20 x 20 cm. Meanwhile, the x-ray exposure settings were performed at 40kV, 50kV, 60kV, and 70kV settings. The module measurement results were further compared to the x-ray machine setting values. Based on the comparison results, the smallest error rate was obtained on Sensor 2 by 0.83%, while the highest error rate was obtained on S5 by 6.43%. The results can be concluded that the LED phosphor can capture x-rays, but the detector was weak due to the interference from ambient light.

Page 10 of 20 | Total Record : 199