cover
Contact Name
Chairul Imron
Contact Email
cha_imron15@its.ac.id
Phone
+6285648721814
Journal Mail Official
limits.matematika@its.ac.id
Editorial Address
Departemen Matematika Fakultas Sains dan Analitika Data Institut Teknologi Sepuluh Nopember Sukolilo, Surabaya 60111, Indonesia Phone: +62-31-5943354 Email: limits.matematika@its.ac.id
Location
Kota surabaya,
Jawa timur
INDONESIA
Limits: Journal of Mathematics and Its Applications
ISSN : 1829605X     EISSN : 25798936     DOI : -
Core Subject : Science, Education,
Limits: Journal of Mathematics and Its Applications merupakan jurnal yang diterbitkan oleh Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia. Limits menerima makalah hasil riset di semua bidang Matematika, terutama bidang Analisis, Aljabar, Pemodelan Matematika, Sistem dan Kontrol, Matematika Diskrit dan Kombinatorik, Statistik dan Stokastik, Matematika Terapan, Optimasi, dan Ilmu Komputasi. Jurnal ini juga menerima makalah tentang survey literatur yang menstimulasi riset di bidang-bidang tersebut di atas.
Articles 270 Documents
Optimasi Komposisi Makanan Penderita Diabetes dengan Hybrid Genetic Algorithm dan Modified Simulated Annealing Nasution, Achmad Suryadi; Saputra, Ilham; Rosidha, Anisa Nur; Mardianto, Lutfi
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Diabetes mellitus is one of the deadliest diseases. Factors that can cause diabetes mellitus are irregular eating patterns and unhealthy lifestyles. Patients with diabetes mellitus must have a healthy diet by identifying the optimal food composition so as not to trigger complications with various other deadly diseases. Identification of food composition was carried out using a hybrid adaptive genetic algorithm and modified simulated annealing. Based on the patient testing results, the average accuracy for carbohydrates, protein, fat, sodium, fiber, and calories was 99.90%, 99.72%, 99.33%, 99.99%, 99.29%, and 99.86%, respectively.
Dinamika Solusi dan Kontrol Optimal Model Penyakit ISPA di Kota Malang Hakim, Lukman
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i3.4204

Abstract

The current research provides a mathematical model utilizing nonlinear ordinary differential equations to represent the spread of acute respiratory infections (ARI). The model is divided into five compartments: the susceptible population, the vaccinated population, the latent population, the infected population, and the recovered population. Through dynamic analysis, two equilibrium points were determined. The disease-free equilibrium point is stable under conditions, while the endemic equilibrium point exhibits asymptotic stability. The lsqcurvefit methods was implemented to estimate the parameters, facilitating accurate parameter approximation. The acquisition of estimated values was implemented in the sensitivity analysis, and several parameters sensitive to were obtained: the vaccination rate, the natural death rate, the mortality cause infection rate, and recovery rate. An optimal control problem was designed by incorporating two control variables: firstly, reducing the direct contact between the susceptible and infected populations, and the other focused on increasing the intensity of infected individuals. The solution of optimal control problem was derived using Pontryagin's Principle. The objective function was formulated as a Lagrange to minimize the number of latent and infected individuals, and maximizing the vaccinated and recovered populations. Finally, numerical simulations were performed to validate the theoretical analysis, demonstrating that the results in line with the objective function of optimal control and effectively support the proposed strategies for controlling the disease.
Kontrol Optimal Model Dinamik Penyebaran Penyakit Tuberkulosis dengan Kekambuhan di Kota Semarang Lathifatul Inayah Alhusna, Lathifatul Inayah Alhusna; Ratna Herdiana
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i3.4349

Abstract

Dalam penelitian ini, kami mengusulkan model dinamik SVIR (Susceptible, Vaccinated, Infectious, Recovered) dengan mempertimbangkan kekambuhan pada penyebaran penyakit Tuberkulosis (TB). Dalam model yang diusulkan ini, kami menggabungkan teori kontrol optimal yang bertujuan untuk mengurangi jumlah penyebaran kasus TB. Terdapat dua variabel kontrol yang digunakan, yaitu edukasi pencegahan TB kepada masyarakat umum, dan pengobatan untuk individu yang terinfeksi aktif. Dalam hal ini, untuk mencari solusi pengendalian yang optimal kami menggunakan Prinsip Minimum Pontryagin. Simulasi numerik dalam menyelesaikan sistem pada masalah kontrol optimal ini menggunakan metode numerik Sweep Maju-Mundur dan metode Runge-Kutta orde keempat. Hasil dari simulasi numerik digunakan untuk menggambarkan perbedaan antara strategi menggunakan kontrol dengan tanpa menggunakan kontrol. Dari hasil simulasi numerik, kami menemukan bahwa jika pengendalian edukasi pencegahan TB dan pengobatan diterapkan secara bersamaan akan lebih efektif dibandingkan dengan menerapkan kontrol secara terpisah, karena subpopulasi yang terinfeksi dapat dikendalikan dengan lebih baik di mana penurunan jumlah kasus mencapai 99.90% dan bertambahnya subpopulasi yang sembuh.
Identifikasi Preferensi Konsumen pada Pembelian Produk Skincare menggunakan Analisis Konjoin Kariyam, Kariyam; Eileen Lyana Putri
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i3.4509

Abstract

Produk skincare adalah produk perawatan kecantikan yang digunakan untuk mencegah, memperbaiki, dan mengatasi masalah kulit seperti jerawat, noda bekas jerawat, flek, atau untuk mencerahkan kulit, mengatasi kulit hitam, menunda penuaan, atau mencerahkan kulit. Tujuan penelitian ini adalah untuk mengetahui preferensi konsumen terhadap pembelian produk skincare berdasarkan tiga karakteristik utama yaitu asal produk (lokal atau internasional), manfaat produk (mencerahkan, melembapkan, anti-aging), dan harga. Data dianalisis dengan pendekatan analisis konjoin untuk menentukan preferensi konsumen dalam memilih produk skincare. Hasil analisis menunjukkan bahwa produk yang paling disukai konsumen adalah produk lokal yang bermanfaat untuk mencerahkan kulit dengan harga di bawah lima puluh ribu. Mayoritas responden adalah perempuan yang berdomisili di pulau Jawa dengan rata-rata usia 23 tahun 9 bulan dan pekerjaan pelajar/mahasiswi. Mereka melakukan pembelian produk skincare sekali dalam satu sampai dua bulan. Berdasarkan model yang diperoleh menunjukkan bahwa manfaat dan asal produk lebih dipertimbangkan daripada harga.
Evaluasi Regresi Terklaster Fuzzy Spasial Simultan dengan Pendekatan Simulasi Siti Hasanah; Muhammad Nur Aidi; Anik Djuraidah
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i3.5425

Abstract

Data spasial merupakan data yang memuat informasi yang berkaitan dengan karakteristik geografis suatu wilayah. Perkembangan data spasial yang mengarah pada data berskala besar membutuhkan metode analisis yang efisien dalam proses pengolahannya. Salah satu metode analisis yang dapat digunakan untuk mengolah data spasial berskala besar adalah spatial fuzzy clustering. Metode ini memungkinkan adanya penyesuaian bobot kelompok berdasarkan kemungkinan data, sehingga lebih mampu menangkap variasi lokal yang sebenarnya terjadi dalam data spasial. Metode spatial fuzzy clustering dengan penalti spasial, Spatial Fuzzy Clustered Regression (SFCR) dan tanpa penalti spasial, Fuzzy Geographically Weighted Clustering Regression (FGWCR) dievaluasi melalui simulasi pada penelitian ini. SFCR merupakan metode yang menggabungkan klasterisasi spasial dan pembentukan persamaan regresi secara simultan, sehingga waktu komputasi menjadi lebih efisien. FGWCR menghasilkan klaster yang mempertimbangkan kedekatan spasial dan kesamaan atribut sehingga efektif digunakan pada data spasial. Data dirancang sehingga terdapat 6 klaster dalam proses simulasi. Hasil simulasi menunjukkan metode SFCR lebih mampu mencerminkan keragaman data dan pembagian klaster dengan akurat. Nilai untuk metode SFCR pada derajat fuzziness 2 dan autokorelasi spasial lemah, sedang, dan kuat berturut-turut yaitu 99.7%, 99.6%, dan 99.5%, sedangkan untuk metode FGWCR yaitu 98.5%, 98.6%, dan 98.1%. Kebaikan persamaan dievaluasi oleh nilai RMSE. Semakin kecil nilai RMSE maka persamaan yang dihasilkan semakin baik. Nilai RMSE untuk metode SFCR pada derajat fuzziness 2 dan autokorelasi spasial lemah, sedang, dan kuat berturut-turut yaitu 0.30, 0.289, dan 0.298, sedangkan untuk metode FGWCR yaitu 0.659, 0.541, dan 0.551. Spatial data refers to data that contains information related to the geographical characteristics of a region. As spatial data evolves into large-scale datasets, efficient analytical methods are required for processing the data. One such method suitable for analyzing large-scale spatial data is spatial fuzzy clustering. This method allows for the adjustment of cluster weights based on data likelihood, making it more capable of capturing the actual local variations present in spatial data. In this study, two types of spatial fuzzy clustering methods were evaluated through simulation: the method with a spatial penalty, Spatial Fuzzy Clustered Regression (SFCR), and the method without a spatial penalty, Fuzzy Geographically Weighted Clustering Regression (FGWCR). SFCR is a method that combines spatial clustering and regression modeling simultaneously, resulting in more efficient computation time. FGWCR produces clusters by considering both spatial proximity and attribute similarity, making it effective for spatial data analysis. The data were designed to form six clusters during the simulation process. The simulation results showed that the SFCR method was more capable of accurately capturing data variation and cluster distribution. The R² values for SFCR at a fuzziness degree of 2 and under weak, moderate, and strong spatial autocorrelation were 99.7%, 99.6%, and 99.5%, respectively, while the R² values for FGWCR were 98.5%, 98.6%, and 98.1%. Model performance was evaluated using RMSE, where lower RMSE values indicate better performance. The RMSE values for the SFCR method at a fuzziness degree of 2 and under weak, moderate, and strong spatial autocorrelation were 0.30, 0.289, and 0.298, respectively, while the RMSE values for the FGWCR method were 0.659, 0.541, and 0.551.
Perbandingan Kinerja Hybrid Classification SVM-RF dan SVM-NN Terhadap Faktor Risiko Anemia Ibu Hamil di Indonesia dengan Pendekatan Clustering K-Means Qalbi, Asyifah; Erfiani, Erfiani; Susetyo, Budi
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Classification is one of the most researched topics by researchers from the field of machine learning and data mining. Machine learning methods that are often used include Support Vector Machine (SVM), Random Forest (RF) and Neural Network (NN). However, SVM does not always provide good accuracy. For example, when applied to highly imbalanced data, SVM will experience challenges. In addition, there is no single best method that can be applied to all classification problems. Currently, hybrid method approaches for data mining applications are becoming increasingly popular such as hybrid SVM-RF, SVM-NN and KMeans-SVM methods. In this study, a hybrid method of SVM-RF and SVM-NN was used to classify risk factors for anemia in pregnant women in Indonesia with a K-Means approach to cluster data misclassified by SVM. The results showed that the hybrid method can improve the performance of the SVM model. Hybrid SVM-RF provides a higher evaluation metric value compared to SVM-NN. The four evaluation metrics used, namely accuracy, balanced accuracy, sensitivity and specificity in SVM-RF are worth 0,989; 0,989; 0,988; and 0,989, respectively. The variables that contribute generally based on SHAP Global to the classification of risk factors for anemia in pregnant women in order are Age, Fe Tablet, Working Status, Education, Nutritional Status and ANC.
Komparasi Spline Kubik Not-a-Knot dan Natural pada Lompatan En-Nesyri Piala Dunia 2022 Delfia Hidayatul Fitri; Said Munzir; Muhammad Ikhwan
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i3.6456

Abstract

Abstrak Gerakan lompatan saat menyundul bola dalam sepak bola memiliki pola yang bervariasi tergantung kondisi. Penelitian ini bertujuan untuk menganalisis secara kinematika lompatan fenomenal En-Nesyri pada Piala Dunia 2022. Data diambil melalui teknik digitalisasi dari demonstrasi gerakan, kemudian dianalisis menggunakan interpolasi spline kubik dengan dua kondisi batas: natural dan not-a-knot. Objek penelitian adalah lompatan En-Nesyri yang mencapai 2,78 meter saat menyundul bola dalam pertandingan melawan Portugal. Hasil penelitian menunjukkan kinematika gerakan lompatan, mencakup posisi, kecepatan, dan percepatan. Selain itu, terdapat perbedaan antara interpolasi spline kubik dengan dua kondisi batas yang dibandingkan. Pada detik 1,5, posisi kepala mencapai ketinggian maksimum. Analisis menunjukkan bahwa spline kubik dengan kondisi batas not-a-knot lebih sesuai untuk memodelkan lompatan fenomenal yang tidak dimulai dari keadaan diam. Kata Kunci: kinematika, lompatan fenomenal, spline kubik natural, spline kubik not-a-knot Abstract The jumping motion when heading the ball in football varies depending on the conditions. This study aims to analyze the phenomenal jump of En-Nesyri at the 2022 World Cup from a kinematic perspective. The data was collected through digitization techniques from a demonstration of the jump and analyzed using cubic spline interpolation with two boundary conditions: natural and not-a-knot. The object of this study is En-Nesyri’s jump, which reached 2.78 meters when heading the ball during the match againts Portugal. The results show the kinematics of the jumping motion, including position, velocity, and acceleration. Additionally, differences between cubic spline interpolation with the two boundary conditions were observed. At 1.5 seconds, the head reaches its maximum height. The analysis indicates that the cubic spline with the not-a-knot boundary condition is more suitable for modeling phenomenal jump that do not start from a stationary position. Keywords: kinematics, phenomenal jump, cubic spline natural, cubic spline not-a-knot
Bilangan Kromatik Lokasi Amalgamasi Sisi Graf Lingkaran ?????(???;??,???,?) dengan ?=?,?,?≤?≤?, dan ?≥? Des Welyyanti; Romie Daramenra; Lyra Yulianti
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i3.8855

Abstract

Misalkan G adalah graf terhubung dan П={?1,?2,…,??} adalah partisi terurut dari ?(?). Misalkan ??adalah himpunan kelas warna menggunakan warna 1,2,...,k dimana k bilangan bulat positif. Kode warna ?П(?)pada titikvdi Gterhadap Пdidefinisikan sebagai kvektor ?П(?)=(?(?,?1),?(?,?2),…,?(?,?i)) dimana ?(?,??)=???{?(?,?)|x∈Si}, untuk 1≤?≤?. Jika setiap titik v di graf G mempunyai kode warna yang berbeda, maka c disebut pewarnaan lokasi dari G. Minimum warna yang digunakan untuk pewarnaan lokasi disebut bilangan kromatik lokasi dari G, dinotasikan dengan ??(?). Pada artikel ini akan dibahas bilangan kromatik lokasi amalgamasi sisi graf lingkaran ?????(???;??,???,?) dengan n=3,4,1≤j≤m, dan m≥2.Kata Kunci: Bilangan Kromatik Lokasi, Graf Lingkaran, Amalgamasi Sisi, Kode Warna, Partisi
Optimasi Komposisi Makanan Penderita Diabetes dengan Hybrid Genetic Algorithm dan Modified Simulated Annealing Achmad Suryadi Nasution; Ilham Saputra; Anisa Nur Rosidha; Lutfi Mardianto
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i3.8857

Abstract

Diabetes mellitus is one of the deadliest diseases. Factors that can cause diabetes mellitus are irregular eating patterns and unhealthy lifestyles. Patients with diabetes mellitus must have a healthy diet by identifying the optimal food composition so as not to trigger complications with various other deadly diseases. Identification of food composition was carried out using a hybrid adaptive genetic algorithm and modified simulated annealing. Based on the patient testing results, the average accuracy for carbohydrates, protein, fat, sodium, fiber, and calories was 99.90%, 99.72%, 99.33%, 99.99%, 99.29%, and 99.86%, respectively.
Perbandingan Kinerja Hybrid Classification SVM-RF dan SVM-NN Terhadap Faktor Risiko Anemia Ibu Hamil di Indonesia dengan Pendekatan Clustering K-Means Asyifah Qalbi; Erfiani; Budi Susetyo
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i3.8862

Abstract

Klasifikasi merupakan salah satu topik yang paling banyak diteliti oleh para peneliti dari bidang machine learning dan data mining. Metode machine learning yang sering digunakan antara lain Support Vector Machine (SVM), Random Forest (RF) dan Neural Network (NN). Namun, SVM tidak selalu memberikan nilai akurasi yang baik. Sebagai contoh, ketika diterapkan pada data yang sangat tidak seimbang, SVM akan mengalami tantangan. Selain itu, tidak terdapat satu metode terbaik yang bisa diterapkan untuk semua masalah klasifikasi. Saat ini, pendekatan metode hybrid untuk penggunaan data mining menjadi semakin populer seperti metode hybrid SVM-RF, SVM-NN dan KMeans-SVM. Pada penelitian ini, metode hybrid SVM-RF dan SVM-NN digunakan untuk mengklasifikasikan faktor risiko anemia pada ibu hamil di Indonesia dengan pendekatan K-Means untuk mengelompokkan data yang salah klasifikasi oleh SVM. Hasil penelitian menunjukkan bahwa metode hybrid dapat meningkatkan kinerja model SVM. Hybrid SVM-RF memberikan nilai metrik evaluasi yang lebih tinggi dibandingkan dengan SVM-NN. Empat metrik evaluasi yang digunakan, yaitu accuracy, balanced accuracy, sensitivity dan specificity pada SVM-RF masing-masing bernilai sebesar 0,989; 0,989; 0,988; dan 0,989. Peubah yang berkontribusi secara umum berdasarkan SHAP Global terhadap klasifikasi faktor risiko anemia pada ibu hamil secara berurutan adalah Usia, Tablet Fe, Status Bekerja, Pendidikan, Status Gizi dan ANC

Filter by Year

2004 2025


Filter By Issues
All Issue Vol. 22 No. 3 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 3 Edisi No Vol. 22 No. 2 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 2 Edisi Ju Vol. 22 No. 1 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 1 Edisi Ma Vol. 21 No. 3 (2024): Limits: Journal of Mathematics and Its Applications Volume 21 Nomor 3 Edisi No Vol. 21 No. 2 (2024): Limits: Journal of Mathematics and Its Applications Volume 21 Nomor 2 Edisi Ju Vol. 21 No. 1 (2024): Limits: Journal of Mathematics and Its Applications Volume 21 Nomor 1 Edisi Ma Vol. 20 No. 3 (2023): Limits: Journal of Mathematics and Its Applications Volume 20 Nomor 3 Edisi No Vol. 20 No. 2 (2023): Limits: Journal of Mathematics and Its Applications Volume 20 Nomor 2 Edisi Ju Vol. 20 No. 1 (2023): Limits: Journal of Mathematics and Its Applications Volume 20 Nomor 1 Edisi Ma Vol. 19 No. 2 (2022): Limits: Journal of Mathematics and Its Applications Volume 19 Nomor 2 Edisi No Vol. 19 No. 1 (2022): Limits: Journal of Mathematics and Its Applications Volume 19 Nomor 1 Edisi Me Vol. 18 No. 2 (2021): Limits: Journal of Mathematics and Its Applications Volume 18 Nomor 2 Edisi No Vol. 18 No. 1 (2021): Limits: Journal of Mathematics and Its Applications Volume 18 Nomor 1 Edisi Me Vol. 17 No. 2 (2020): Limits: Journal of Mathematics and Its Applications Volume 17 Nomor 2 Edisi De Vol. 17 No. 1 (2020): Limits: Journal of Mathematics and Its Applications Volume 17 Nomor 1 Edisi Ju Vol. 16 No. 2 (2019): Limits: Journal of Mathematics and Its Applications Volume 16 Nomor 2 Edisi De Vol. 16 No. 1 (2019): Limits: Journal of Mathematics and Its Applications Volume 16 Nomor 1 Edisi Ag Vol. 15 No. 2 (2018): Limits: Journal of Mathematics and Its Applications Volume 15 Nomor2 Edisi Nop Vol. 15 No. 1 (2018): Limits: Journal of Mathematics and Its Applications Volume 15 Nomor1 Edisi Mar Vol. 14 No. 2 (2017): Limits: Journal of Mathematics and Its Applications Volume 14 Nomor 2 Edisi No Vol. 14 No. 1 (2017): Limits: Journal of Mathematics and Its Applications Volume 14 Nomor 1 Edisi Me Vol. 13 No. 2 (2016): Limits: Journal of Mathematics and Its Applications Volume 13 Nomor 2 Edisi No Vol. 13 No. 1 (2016): Limits: Journal of Mathematics and Its Applications Volume 13 Nomor 1 Edisi Me Vol. 12 No. 1 (2015): Limits: Journal of Mathematics and Its Applications Volume 12 Nomor 1 Edisi Me Vol. 9 No. 1 (2012): Limits: Journal of Mathematics and Its Applications Volume 9 Nomor 1 Edisi Nove Vol. 8 No. 2 (2011): Limits: Journal of Mathematics and Its Applications Volume 8 Nomor 2 Edisi Nove Vol. 7 No. 2 (2010): Limits: Journal of Mathematics and Its Applications Volume 7 Nomor 2 Edisi Nove Vol. 6 No. 1 (2009): Limits: Journal of Mathematics and Its Applications Volume 6 Nomor 1 Edisi Mei Vol. 5 No. 1 (2008): Limits: Journal of Mathematics and Its Applications Volume 5 Nomor 1 Edisi Mei Vol. 4 No. 2 (2007): Limits: Journal of Mathematics and Its Applications Volume 4 Nomor 2 Edisi Nove Vol. 4 No. 1 (2007): Limits: Journal of Mathematics and Its Applications Volume 4 Nomor 1 Edisi Mei Vol. 3 No. 2 (2006): Limits: Journal of Mathematics and Its Applications Volume 3 Nomor 2 Edisi Nove Vol. 3 No. 1 (2006): Limits: Journal of Mathematics and Its Applications Volume 3 Nomor 1 Edisi Mei Vol. 2 No. 2 (2005): Limits: Journal of Mathematics and Its Applications Volume 2 Nomor 2 Edisi Mei Vol. 2 No. 1 (2005): Limits: Journal of Mathematics and Its Applications Volume 2 Nomor 1 Edisi Nove Vol. 1 No. 2 (2004): Limits: Journal of Mathematics and Its Applications Volume 1 Nomor 2 Edisi Nove Vol. 1 No. 1 (2004): Limits: Journal of Mathematics and Its Applications Volume 1 Nomor 1 Edisi Nove More Issue