cover
Contact Name
Agung Setia Budi
Contact Email
agungsetiabudi@ub.ac.id
Phone
+62341-577911
Journal Mail Official
jtiik@ub.ac.id
Editorial Address
Fakultas Ilmu Komputer Universitas Brawijaya Gedung F FILKOM Lt. 8, Ruang BPJ Jalan Veteran No. 8 Malang Indonesia - 65145
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Teknologi Informasi dan Ilmu Komputer
Published by Universitas Brawijaya
ISSN : 23557699     EISSN : 25286579     DOI : http://dx.doi.org/10.25126/jtiik
Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen untuk menjadi jurnal nasional terbaik dengan mempublikasikan artikel berbahasa Indonesia yang berkualitas dan menjadi rujukan utama para peneliti. JTIIK di akreditasi oleh Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor: 36/E/KPT/2019 yang berlaku sampai dengan Volume 11 Nomor 2 Tahun 2024.
Articles 1,288 Documents
Model Hybrid untuk Prediksi Jumlah Penduduk yang Hidup dalam Kemiskinan Putra, Toni Wijanarko Adi; Solikhin, Solikhin; Abdillah, M Zakki
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107484

Abstract

Kemiskinan merupakan permasalahan global yang saling berkaitan dengan permasalahan sosial lainnya. Sebagian besar negara berkembang di dunia pasti mengalami hal tersebut dan berusaha mencari solusi untuk mengentaskan kemiskinan, seperti yang terjadi di provinsi Jawa Tengah, Indonesia. Kemiskinan di Jawa Tengah mengalami fluktuasi selama lima tahun terakhir. Secara spesifik, menurut data Badan Pusat Statistik, jumlah penduduk miskin pada tahun 2018, 2019, 2020, 2021, dan 2022 sebanyak 3.897,20 ribu, 3.743,23 ribu, 3.980,90 ribu, 4.109,75 ribu, dan 3.831,44 ribu jiwa. Tinjauan terhadap naik turunnya kemiskinan pada tahun-tahun mendatang sangatlah penting. Untuk memerangi kemiskinan secara efektif, tidak hanya memahami penyebab kemiskinan tetapi memprediksi kemiskinan juga sangatlah penting. Penelitian ini bertujuan untuk memprediksi garis kemiskinan, jumlah penduduk miskin, dan persentase penduduk miskin di Jawa Tengah. Penelitian ini mengusulkan model peramalan hybrid untuk memperkirakan perubahan kemiskinan di Jawa Tengah. Di sini kami mengintegrasikan teknik statistik Holt-Winter triple exponential smoothing ke dalam fuzzy time series dengan pendekatan algoritma rate of change. Hasil uji kesalahan prediksi dengan metode Mean Absolute Percentage Error sangat kecil yaitu: garis kemiskinan sebesar 0,003%, jumlah penduduk miskin sebesar 0,005%, dan persentase penduduk miskin sebesar 0,004%. Temuan penelitian ini diyakini akan membantu pembuat kebijakan dalam mengembangkan strategi efektif untuk memerangi kemiskinan. Pengetahuan ini dapat menjadi dasar pengambilan keputusan alokasi sumber daya bagi pemerintah daerah dan pusat serta pembuat kebijakan.   Abstract Poverty is a global problem that is interconnected with other social problems. Most developing countries in the world certainly experience this and are trying to find solutions to alleviate poverty, as is the case in the province of Central Java, Indonesia. Poverty in Central Java has fluctuated over the last five years. Specifically, according to data from the Central Statistics Agency, the number of poor people in 2018, 2019, 2020, 2021, and 2022 is 3,897.20 thousand, 3,743.23 thousand, 3,980.90 thousand, 4,109.75 thousand, and 3,831.44 thousand people. A review of the rise and fall of poverty in the coming years is very important. To fight poverty effectively, not only understanding the causes of poverty but also predicting poverty is essential. The aim of this research is to predict the poverty line, number of poor people, and percentage of poor people in Central Java. This research proposes a hybrid forecasting model to estimate changes in poverty in Central Java. Here we integrate Holt-Winter's triple exponential smoothing statistical technique into fuzzy time series with a rate of change algorithm approach. The prediction error test results using the Mean Absolute Percentage Error method are very small, namely: the poverty line is 0.003%, the number of poor people is 0.005%, and the percentage of poor people is 0.004%. It is believed that the findings of this research will assist policymakers in developing effective strategies to combat poverty. This knowledge can be the basis for resource allocation decisions for local and central governments and policymakers.
Peningkatan Akurasi Metode Weighted Fuzzy Time Series Forecasting Menggunakan Algoritma Evolusi Differensial dan Fuzzy C-Means Rozy, Agus Fachrur; Solimun, Solimun; Wardhani, Ni Wayan Surya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 5: Oktober 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107505

Abstract

Prediksi adalah suatu pendekatan yang digunakan untuk mengantisipasi ketidakpastian masa depan. Metode prediksi konfensional terkendala pada penyesuaian data terhadap asumsi yang digunakan sehingga diperlukan Metode Weighted Fuzzy Time Series. Meskipun metode WFTS telah terbukti efektif terdapat tantangan dalam meningkatkan akurasi peramalan yang dihasilkan. Dua teknik yang sering digunakan dalam konteks ini adalah Algoritma Evolusi Differensial (ED) dan Fuzzy C-Means (FCM). Data yang digunakan pada penelitian ini adalah Jakarta Islamic Index (JKII) per bulan dari bulan Agustus 2018 hingga Juli 2023. Data yang digunakan adalah data sekunder yang diperoleh dari situs www.yahoo.finance.com. Analisis dilakukan untuk meningkatkan akurasi dari metode peramalan WFTS dengan klasifikasi FCM dan proses optimalisasi menggunakan hasil forecasting dengan Algoritma Evolusi Diffensial (DE).Hasil klasifikasi dengan Fuzzy C-Means, ditemukan 7 klaster dengan jumlah keanggotaan yang berbeda. Perhitungan nilai peramalan dilkakukan dengan defuzzyfikasi dengan mengubah variabel linguistik menjadi bilangan real. Proses transformasi ini melibatkan perkalian antara bobot yang diperoleh dari estimasi Fuzzy C Means dengan nilai titik tengah pada setiap cluster. Proses optimalisasi hasil dilakukan dengan menggunakan algoritma DE dapat meningkatkan akurasi dari forecasting. Kesimpulan yang didapat yaitu algoritma evolusi differensial dapat meningkatkan akurasi forecasting dari metode weighted fuzzy time series dengan kombinasi pembentukan kelas interval menggunakan metode fuzzy c-means. Hal ini dikarenakan nilai MAPE yang dihasilkan dari algoritma evolusi differensial lebih kecil daripada model weighted fuzzy time series.   Abstract Prediction is a form of approach in anticipating future uncertainties. Conventional prediction methods encounter difficulties in adapting data with the assumptions used, necessitating the application of the Weighted Fuzzy Time Series (WFTS) method. Although the WFTS method has proven effective, there are challenges in improving the accuracy of the generated forecasts. There are two commonly applied approaches: the Differential Evolution (DE) algorithm and Fuzzy C-Means (FCM). The data used in this research is the Jakarta Islamic Index (JKII) on a monthly basis from August 2018 to July 2023. The information collected is secondary data obtained from the website www.yahoo.finance.com. The analysis conducted involves performing FCM classification to form interval classes and optimizing the forecasting results of the WFTS method with DE. The Fuzzy C-Means classification resulted in finding 7 clusters with different membership counts. Forecasting values are calculated through defuzzification by converting linguistic variables into real numbers. This transformation process involves multiplying the weights obtained from the Fuzzy C-Means estimation with the mid-point values of each cluster.The optimization process is performed using the DE algorithm. The research findings conclude that the use of the differential evolution algorithm improves the accuracy of the forecasting from the Weighted Fuzzy Time Series method with the approach of combining interval class formation through the Fuzzy C-Means method. The DE algorithm works by seeking the best solution in a complex parameter space through iterations and performance evaluations, thereby significantly enhancing the performance of the forecasting model.
IMPLEMENTASI THREAT MITIGATION DAN TRAFFIC POLICY MENGGUNAKAN UTM PADA JARINGAN TCP/IP Hidayat, M. Reza; Saragih, Ruben; Basuki, Sofyan; Charisma, Atik; Setiawan, Antrisha Daneraici
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 2: April 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241127528

Abstract

Penelitian bertujuan merancang UTM berbasis aplikasi open-source yang mampu melakukan Threat Mitigation dan menerapkan manajemen trafik pada jaringan TCP/IP. Metoda Threat Mitigation menggunakan SNORT sebagai IPS untuk melakukan tindakan terhadap ancaman serta melakukan monitoring trafik yang diintegrasikan dengan Splunk sebagai SIEM. Metoda Traffic Policy menggunakan SQUID sebagai Proxy untuk melakukan manajemen trafik. Pengujian perfomansi jaringan dilakukan dengan mengukur parameter QOS terlebih dahulu pada setiap perangkat akses untuk melihat performansi jaringan saat terjadi serangan sebelum dan sesudah implementasi UTM. Serangan DDOS berupa ICMP Flood dan SYN Flood. Setelah melakukan simulasi serangan DDOS selama 5 menit, Threat Mitigation mampu melakukan drop terhadap paket yang berasal dari serangan DDOS sebanyak 232409 paket dengan nilai throughput maksimum 1,823 Mbps, lebih baik dari throughput yang dihasilkan serangan DDOS sebelum implementasi UTM yaitu 869 Mbps. Hasil indeks parameter QOS setiap perangkat akses jaringan memiliki nilai indeks 4, lebih baik dari indeks parameter QOS sebelum implementasi UTM yaitu 2,843. Traffic Policy pada UTM mampu melakukan efisiensi bandwidth sebesar 4,66% atau 943,6645 MB selama 5 hari kerja dari total volume cache 20,23 GB, dengan menerapkan web cache untuk akses HTTP dan limitasi throughput sebesar 300 KB pada ekstensi file image, audio, video dan executeable berukuran diatas 20 MB.
Perbandingan Kerja Binomial GLMM Tree dan BIMM Forest untuk Memodelkan Status Bekerja Penduduk Sirodj, Dwi Agustin Nuriani; Notodiputro, Khairil Anwar; Sartono, Bagus
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 1: Februari 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241117531

Abstract

Model prediksi berbasis pada pohon keputusan saat ini banyak dikembangkan di berbagai bidang. Pengembangan metode yang dilakukan diantaranya memasukkan pengaruh acak ke dalam model.  Generalized linier mixed model (GLMM) Tree menjadi salah satu model yang dapat mengakomodasi adanya pengaruh acak dan dilakukan dengan metode partisi rekursif hanya saja waktu komputasi yang dibutuhkan relatif lebih lama. Selanjutnya metode alternatif lainnya adalah Binary Mixed Model (BiMM) Forest yang menggabungkan prinsip kerja Bayesian GLMM dan Random Forest. Dari kedua metode yang akan digunakan maka permasalahan yang dihadapi adalah bagaimana kinerja dari metode GLMM Tree dan BiMM Forest jika diterapkan untuk klasifikasi status bekerja penduduk di Kabupaten Bogor dan Kabupaten Pangandaran. Dari hasil analisis tampak bahwa metode BiMM Forest memiliki kinerja yang lebih baik di bandingkan dengan GLMM Tree untuk kedua daerah. Selain itu ditunjukkan pula bahwa peubah yang penting dalam proses klasifikasi status bekerja penduduk di Kabupaten Bogor dan Kabupaten Pangandaran adalah peubah terkait aspek pendidikan, sosial, dan ekonomi.
Transformasi Kota Cerdas dalam Mitigasi Banjir: Pemodelan Curah Hujan DKI Jakarta dengan Pendekatan Spatial Vector Autoregressive (SpVAR) dan Pemetaan Bobot Queen Contiguity Melanwati, Rinda Lolita; Sumarminingsih, Eni; Pramoedyo, Henny
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107537

Abstract

Perubahan iklim dan cuaca ekstrem menjadi tantangan global, termasuk di Indonesia, dengan peningkatan banjir di DKI Jakarta. Penanggulangan membutuhkan peramalan curah hujan yang akurat. Model VAR digunakan untuk memahami hubungan variabel cuaca. Namun, data deret waktu sering memiliki dimensi spasial. Oleh karena itu, dikembangkan model Spatial Vector Autoregressive (SpVAR) yang mempertimbangkan dimensi spasial dan waktu. Pembobot queen contiguity digunakan untuk representasi yang lebih akurat. Penelitian ini memanfaatkan data BPS DKI Jakarta dari Januari 2017 hingga Desember 2021. Hasilnya menunjukkan pengaruh spasial dalam model SpVAR (1,3) dengan bobot queen contiguity. Curah hujan, suhu, dan kelembaban udara saling mempengaruhi di wilayah diprediksi dan lainnya. Model ini penting dalam strategi mitigasi banjir dan kebijakan kota cerdas untuk mengurangi risiko banjir di DKI Jakarta.   Abstract Climate change and extreme weather pose global challenges, including in Indonesia, leading to increased floods in DKI Jakarta. Addressing this requires accurate rainfall forecasts. The VAR model is used to understand the relationships between weather variables. However, time series data often have spatial dimensions. Therefore, a Spatial Vector Autoregressive (SpVAR) model has been developed considering both spatial and temporal dimensions. Queen contiguity weighting is used for more accurate representation. This study utilizes BPS DKI Jakarta data from January 2017 to December 2021. The results show spatial influence in the SpVAR (1,3) model with queen contiguity weighting. Rainfall, temperature, and humidity mutually influence predicted and other areas. This model is crucial for flood mitigation strategies and smart city policies to reduce flood risks in DKI Jakarta.
Genetic Fuzzy System untuk Klasifikasi Tutupan Lahan Berdasarkan Foto Udara Unmanned Aerial Vehicle (UAV) Setiawan, Budi Darma; Rusydi, Alfi Nur
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107554

Abstract

Pengamatan terhadap tata letak sebuah wilayah, terutama wilayah berpenduduk, penting dilakukan untuk mengetahui perkembangan dan perubahan yang terjadi. Salah satu pendekatan yang dapat digunakan untuk pengamatan perkembangan suatu wilayah dari waktu ke waktu adalah dengan dengan melihat perubahan tutupan lahan (land cover) secara spasial dengan menggunakan citra foto udara. Foto udara yang mencakup sebuah wilayah dianalisis dengan mengelompokan jenis tutupan lahan atau dikenal dengan land cover classification (klasifikasi tutupan lahan). Metode klasifikasi yang digunakan adalah dengan genetic fuzzy system, yaitu metode klasifikasi dengan menggunakan sistem fuzzy yang aturannya dan fungsi keanggotaannya dioptimasi dengan menggunakan algoritma genetika. Proses metode ini terdiri dari dua tahap yaitu training process, untuk mencari aturan fuzzy yang baik, dan kemudian dilanjutkan dengan tuning process, yaitu proses untuk menggeser batasan nilai pada fungsi keanggotaan himpunan fuzzy yang digunakan. Input program ini adalah nilai red (R), green (G), dan blue (B) dari tiap pixel di dalam citra, dan outputnya adalah kelas pixel yang dikelompokkan (tanah, air, vegetasi, bangunan, dan jalan). Hasil penelitian menunjukkan bahwa nilai fitness tertinggi yang diperoleh adalah hingga 0.84 atau 84%.   Abstract Observation of the layout of an area, especially populated areas, is important to monitor what has been changed during the time period. To observe the development of an area from time to time, one approach that can be done is to observe land cover changes from above. Aerial imagery of an area is analyzed by grouping some subareas based on their land cover types or known as land cover classification. This study proposed the genetic fuzzy system to classify each pixel in the image. The genetic fuzzy system is a classification method using a fuzzy system whose membership function is optimized using a genetic algorithm. The process consists of two stages, namely the training process, to find good fuzzy rules, and then proceed with tuning processes, namely the process of shifting the value constraints on the membership function of the fuzzy set used. The input of this program is the red (R), green (G), and blue (B) values of each pixel in the image, and the output is the class in which the pixels are grouped (soil, water, vegetation, buildings, and roads). From the experimental results, the highest fitness value was obtained up to 0.84 or 84%.
Pengembangan Knowledge Management System Ukiran Kayu Khas Bali Berbasis Artificial Intelligence Restu Indrawan Prabawa, I Putu; Wardhana, Ariq Cahya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107576

Abstract

Seni ukir kayu Bali adalah hasil karya dari para seniman ukir kayu asli Bali yang memiliki bakat luar biasa dalam beberapa dekade. Mereka bekerja dengan konsisten dan penuh dedikasi untuk menciptakan karya yang terbaik dan berkualitas tinggi. Selain itu, mereka selalu menyertakan filosofi spiritual yang mendalam dalam hasil karyanya. Begeh Ukir adalah UKM yang bergerak dalam industri seni ukiran Bali yang telah berdiri sejak tahun 2000. Produk utama yang disediakan adalah sanggah, yang secara harfiah berarti tempat ibadah. Kepercayaan Hindu percaya bahwa roh nenek moyang keluarga mendiami sanggah, di mana mereka ditempatkan di dalam sudut sakral atau di area kosong rumah. Dalam memfasilitasi dan meningkatkan pemahaman manajemen sumber daya manusia yang tergabung  ke  dalam UKM Begeh Ukir melalui KMS yang bertujuan agar pengetahuan bisa dapat berlanjut pada generasi penerusnya. Pengetahuan yang disimpan pada KMS berhasil dipetakan dalam bentuk Knowledge Mapping yang terdiri dari sanggah, bale, bahan dan filosofi. Metode KMSLC diterapkan pada pengembangan KMS berhasil mengembangkan chatbot AI berbasis NLP dengan presentase kebenaran knowledge yang dihasillkan sebesar 75%.   Kata kunci: Artificial Intelligence, Knowledge Management System, Website, Ukiran Bali   Abstract Balinese wood carving art is the work of original Balinese wood carving artists who have extraordinary talent in decades. They work with full consistency and dedication to create the best and highest quality work. In addition, they always include a deep spiritual philosophy in their work. Begeh Ukir is an UKM engaged in the Balinese carving art industry which has been established since 2000. The main product provided is sanggah, which literally means a place of worship. Hindu beliefs believe that the spirits of the family's ancestors inhabit sanggah, where they are placed in sacred corners or in empty areas of the house. In facilitating and increasing understanding of human resource management who are members of the Begeh Carving UKM through KMS which aims so that knowledge can continue in the next generation. The knowledge stored in the KMS has been successfully mapped in the form of Knowledge Mapping which consists of objections, bale, materials and philosophy. The KMSLC method applied to the development of KMS succeeded in developing an NLP-based AI chatbot with a percentage of truth of the knowledge generated by 75%.
Analisis Sentimen Ulasan Rumah Makan Menggunakan Perbandingan Algoritma Support Vector Machine dengan Naive bayes (Studi Kasus: Ayam Goreng Nelongso Cabang Singosari, Malang) Salsabillah, Dinar Fairus; Ratnawati, Dian Eka; Setiawan, Nanang Yudi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 1: Februari 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241117584

Abstract

Peningkatan kualitas produk dan pelayanan merupakan tantangan yang dihadapi oleh bisnis kuliner, termasuk rumah makan Ayam Goreng Nelongso Singosari di Kabupaten Malang. Analisis sentimen digunakan untuk mengidentifikasi ulasan pelanggan terkait pelayanan, kualitas produk, harga, dan kepuasan pelanggan. Penelitian ini membandingkan metode Support Vector Machine (SVM), metode Naïve Bayes Classifier (NBC), dan Root Cause Analysis untuk mengklasifikasikan sentimen ulasan pelanggan dan menganalisis masalah yang mendasarinya. Tujuan penelitian ini adalah membandingkan hasil dari algoritma Support Vector Machine dan Naïve Bayes Classifier dalam pengklasifikasian sentimen ulasan pelanggan rumah makan Ayam Goreng Nelongso. Penelitian ini juga bertujuan untuk menghasilkan rekomendasi berdasarkan analisis root cause pada sentimen negatif ulasan pelanggan. Implementasi kedua algoritma klasifikasi menunjukkan performa yang baik dalam mengklasifikasikan data dengan akurasi tinggi. Pengujian menunjukkan bahwa kinerja SVM lebih unggul dengan tingkat akurasi mencapai 92,74%, sementara NBC mencapai tingkat akurasi sebesar 91,67%. Hasil analisis root cause menunjukkan beberapa rekomendasi untuk meningkatkan aspek harga, makanan, layanan, dan tempat rumah makan. Rekomendasi yang dapat dilakukan oleh pihak rumah makan diantaranya adalah evaluasi ukuran dan harga, penggunaan deep frying, pelatihan dan evaluasi pelayanan, serta penambahan tenaga kerja atau kerjasama dengan outsourcing dalam menjaga kebersihan tempat. Hasil penelitian diharapkan dapat membantu pemilik rumah makan dalam mengembangkan kualitas produk dan pelayanan serta memberikan pandangan untuk langkahlangkah yang dapat diambil di kemudian hari. 
Model Classifer Judul Berita Pariwisata Indonesia Berdasarkan Sentimen Dewi, Ni Luh Putu Risma; Wijaya, I Nyoman Saputra Wahyu; Purnamawan, I Ketut; Marti, Ni Wayan
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 1: Februari 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241117617

Abstract

Kemajuan teknologi dan platform digital telah menyebabkan perubahan penting dalam industri pariwisata, termasuk penyebaran berita pariwisata. Artikel-artikel berita yang kerap dipublikasikan melalui portal media online dapat berdampak besar pada persepsi positif maupun negatif bagi pembaca. Oleh sebab itu, penelitian ini bertujuan untuk mengembangkan sebuah classifier yang mampu melakukan klasifikasi terhadap judul berita pariwisata berdasarkan sentimen. Sebelumnya, penelitian serupa biasanya lebih berfokus pada klasifikasi berita pariwisata Indonesia dengan menggunakan data dari platform Twitter. Namun, dalam penelitian ini, penulis melakukan pendekatan yang berbeda dengan menggunakan data dari portal berita online, dengan hanya mengambil judul berita sebagai sumber datanya. Penelitian berfokus pada analisis dan klasifikasi sentimen atau sikap emosional yang terkandung dalam judul-judul berita pariwisata. Dalam penelitian ini, digunakan metode machine learning Support Vector Machine (SVM). Data dikumpulkan dari situs berita Detik.com dan diberi label secara manual sesuai dengan sentimen yang terkandung dalamnya. Proses preprocessing teks digunakan untuk mempersiapkan data judul berita pariwisata Indonesia sehingga fiturnya dapat diekstraksi dengan pendekatan Binary Term Presence. Data penelitian dibagi menjadi dua bagian, yaitu 90% untuk proses pelatihan (training proses) dan 10% untuk pengujian, menerapkan teknik K-Fold Cross Validation untuk membagi data dalam proses pelatihan. Hasil penelitian menunjukkan bahwa pendekatan Binary Term Presence berhasil mencapai akurasi sebesar 87,80% dengan kernel RBF. Penelitian ini memberikan kontribusi penting dalam memahami respon publik terhadap topik atau isu pariwisata yang dipublikasikan oleh media. Metode dan pendekatan yang dikembangkan diharapkan dapat menjadi panduan dalam menganalisis sentimen terkini terkait industri pariwisata dan berita yang terkait dengannya.
Klasifikasi Tenun Timor Menggunakan Metode SVM Berdasarkan Speeded Up Robust Features Kelen, Yoseph P.K.; Baso, Budiman
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107625

Abstract

Penelitian ini dilakukan sebagai upaya untuk melestarikan kain tenun Timor di bidang teknologi informasi, kususnya bidang pengolahan citra digital, yaitu pengenalan pola yang merupakan solusi untuk mengenali citra tenun secara otomatis. Dalam penelitian ini, klasifikasi citra tenun Timor mengaplikasikan metode SURF (Speeded Up Robust Feature) sebagai ekstraksi fitur dengan representasi BoVW (Bag of Visual Words) sedangkan SVM (Support Vector Machine) digunakan sebagai metode classifier. Agar kinerja BoVW lebih baik, digunakan pendekatan untuk menentukan jumlah cluster yang tepat untuk mengelompokkan pola visual words. Penentuan parameter algoritma klasifikasi SVM dilakukan adalah kernel dan metode multi class SVM yang digunakan. Data citra tenun Timor digunakan sebanyak 420 dengan 7 kelas motif citra akan dibagi menjadi data latih dan data uji menggunakan 5-fold cross validation. Berdasarkan hasil percobaan yang dilakukan, diperoleh hasil yang berbeda pada pengujian nilai cluster dan parameter SVM yang digunakan. Pada visual words dengan nilai cluster 500 dengan algoritma klasifikasi multi class SVM yaitu metode OVO (One Versus All) menggunakan kernel linear memperoleh hasil terbaik pada penelitian ini dengan tigkat Accuracy mencapai 98,10%. Dari hasil penelitian ini didapatkan metode untuk klasifikasi citra motif tenun Timor yang lebih akurat.   Abstract This research was conducted as an effort to preserve Timor woven fabrics in the field of information technology, especially in the field of digital image processing, namely pattern recognition which is a solution to recognize weaving images automatically. In this study, the classification of Timorese woven images applies the SURF (Speeded Up Robust Feature) method as feature extraction with BoVW (Bag of Visual Words) representation while SVM (Support Vector Machine) is used as a classifier method. For better BoVW performance, an approach is used to determine the right number of clusters to group visual words patterns. Parameters for the SVM classification algorithm are determined using the kernel and the SVM multi-class method used. 420 Timorese weaving image data are used with 7 classes of image motifs which will be divided into training data and test data using 5-fold cross validation. Based on the results of the experiments conducted, different results were obtained in testing the cluster values and SVM parameters used. In visual words with a cluster value of 500 with the SVM multi-class classification algorithm, namely the OVO (One Versus All) method using a linear kernel, the best results were obtained in this study with an accuracy level of 98.10%. From the results of this study, a more accurate method for classifying images of Timorese woven motifs was obtained.%.

Filter by Year

2014 2025


Filter By Issues
All Issue Vol 12 No 6: Desember 2025 Vol 12 No 5: Oktober 2025 Vol 12 No 4: Agustus 2025 Vol 12 No 3: Juni 2025 Vol 12 No 2: April 2025 Vol 12 No 1: Februari 2025 Vol 11 No 6: Desember 2024 Vol 11 No 5: Oktober 2024 Vol 11 No 4: Agustus 2024 Vol 11 No 3: Juni 2024 Vol 11 No 2: April 2024 Vol 11 No 1: Februari 2024 Vol 10 No 6: Desember 2023 Vol 10 No 5: Oktober 2023 Vol 10 No 4: Agustus 2023 Vol 10 No 3: Juni 2023 Vol 10 No 2: April 2023 Vol 10 No 1: Februari 2023 Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022 Vol 9 No 6: Desember 2022 Vol 9 No 5: Oktober 2022 Vol 9 No 4: Agustus 2022 Vol 9 No 3: Juni 2022 Vol 9 No 2: April 2022 Vol 9 No 1: Februari 2022 Vol 8 No 6: Desember 2021 Vol 8 No 5: Oktober 2021 Vol 8 No 4: Agustus 2021 Vol 8 No 3: Juni 2021 Vol 8 No 2: April 2021 Vol 8 No 1: Februari 2021 Vol 7 No 6: Desember 2020 Vol 7 No 5: Oktober 2020 Vol 7 No 4: Agustus 2020 Vol 7 No 3: Juni 2020 Vol 7 No 2: April 2020 Vol 7 No 1: Februari 2020 Vol 6 No 6: Desember 2019 Vol 6 No 5: Oktober 2019 Vol 6 No 4: Agustus 2019 Vol 6 No 3: Juni 2019 Vol 6 No 2: April 2019 Vol 6 No 1: Februari 2019 Vol 5 No 6: Desember 2018 Vol 5 No 5: Oktober 2018 Vol 5 No 4: Agustus 2018 Vol 5 No 3: Juni 2018 Vol 5 No 2: April 2018 Vol 5 No 1: Februari 2018 Vol 4 No 4: Desember 2017 Vol 4 No 3: September 2017 Vol 4 No 2: Juni 2017 Vol 4 No 1: Maret 2017 Vol 3 No 4: Desember 2016 Vol 3 No 3: September 2016 Vol 3 No 2: Juni 2016 Vol 3 No 1: Maret 2016 Vol 2, No 2 (2015) Vol 2 No 2: Oktober 2015 Vol 2, No 1 (2015) Vol 2 No 1: April 2015 Vol 1, No 2 (2014) Vol 1 No 2: Oktober 2014 Vol 1, No 1 (2014) Vol 1 No 1: April 2014 More Issue