cover
Contact Name
Habiddin
Contact Email
Habiddin_wuni@um.ac.id
Phone
-
Journal Mail Official
jpek.journal@um.ac.id
Editorial Address
O2 building, Chemistry Department, Fakultas MIPA Universitas Negeri Malang Jl. Semarang 5 Malang, East Java - Indonesia 65145
Location
Kota malang,
Jawa timur
INDONESIA
J-PEK (JURNAL PEMBELAJARAN KIMIA)
ISSN : 25286536     EISSN : 25795945     DOI : -
Core Subject : Education, Social,
J-PEK, Jurnal Pembelajaran Kimia (e-issn: 2579-5945; p-issn: 2528-6536) is published by Chemistry Department, Fakultas MIPA Universitas Negeri Malang. The publishing frequency of the journal is two issues per year (June and December) and it welcomes articles (in English or in the Indonesian language) in the area of chemistry education including research results, review or short communication, conceptual ideas in chemistry education, and others in-depth analysis of relevant issues in chemistry education disciplines.
Arjuna Subject : -
Articles 105 Documents
MISKONSEPSI KIMIA, SEBUAH MISTERI Suyono Suyono
J-PEK (Jurnal Pembelajaran Kimia) Vol 5, No 1 (2020): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v5i12020p001

Abstract

Kajian ini bertujuan untuk membuka tabir misteri pada miskonsepsi kimia. Pintu pembuka tabir itu minimal berupa kerangka berpikir yang mengarah kepada jawaban awal terhadap pertanyaan kenapa remediasi miskonsepsi kimia masih menyisakan sejumlah individu resisten. Metaanalisis telah dilakukan terhadap berbagai hasil penelitian tentang remediasi miskonsepsi kimia. Dari 11 artikel Conceptual Change Text (CCT) yang dianalisis terdapat 6 (enam) artikel yang pada akhir proses pengubahan konsepsi masih menyisakan lebih dari 20% individu miskonsepsi atau masih didapatinya miskonsepsi kimia pada setiap individu lebih dari 20% konsep yang diujikan. Enam artikel itu dipublikasikan antara lain oleh: (1) Ultay et al. (2014), (2) Pabuccu and Geban (2012), (3) Balci (2006), (4) Pinarbasi et al. (2006), (5) Gunay (2005), dan (6) Calik et al. (2005). Upaya yang dilakukan untuk meremediasi individu miskonsepsi pada sejumlah konsep kimia belum ada yang berhasil menghilangkan keseluruhan miskonsepsi pada individu. Proses akomodasi adalah inti dari proses pengubahan konsepsi individu. Oleh karena itu, terhadap dokumen CCT yang terlampir pada keenam artikel di atas dianalisis keberadaan cara-cara penciptaan empat kondisi untuk terjadinya proses akomodasi. Empat kondisi itu adalah: (1) harus ada ketidakpuasan terhadap konsepsi yang telah ada, (2) sebuah konsepsi baru yang dihadirkan harus dapat dimengerti atau jelas, (3) konsepsi baru yang dihadirkan harus masuk akal, dan (4) konsepsi baru menampakkan potensi atau peluang dapat dimanfaatkan untuk pengembangan lebih lanjut. Dari enam dokumen CCT yang dianalisis didapati lima dokumen CCT yang diimplementasikan oleh Ultay et al. (2014), Balci (2006), Pinarbasi et al. (2006), Gunay (2005), dan Calik et al. (2005) tidak memfasilitasi pengkondisian akomodasi yang keempat. Apakah tidak dipenuhinya kondisi akomodasi yang keempat berkorelasi dengan 20% individu yang masih tetap miskonsepsi, adalah sebuah misteri yang perlu dipecahkan. Jika asumsi tentang korelasi itu benar, maka kerangka berpikir yang mengarah kepada jawaban awal terhadap pertanyaan kenapa remediasi miskonsepsi kimia masih menyisakan sejumlah individu resisten miskonsepsi adalah pemberian perhatian kepada pengkondisian proses akomodasi nomor empat. Jika ditinjau dari tiga pertanyaan keilmuan, maka pemahaman atas kemanfaatan sebuah konsep tergolong ke dalam pertanyaan aksiologi. Miskonsepsi kimia, sebuah misteri yang menarik untuk diketahui dengan pasti penyebab dan solusinya. Ruang riset kearah ini masih terbuka lebar. Apakah pelibatan individu kepada kajian aksiologi dapat membantu tahap ekuilibrasi dan rekonstruksi konsepsi individu, masih juga misteri yang perlu dijawab melalui riset yang komprehensif.
ANALISIS KETERAMPILAN BERPIKIR KRITIS PADA INDIKATOR MEMBERIKAN PENJELASAN LEBIH LANJUT MATERI HIDROKARBON Herunata Herunata; Reza Rewindi Amayliadevi; Hayuni Retno Widarti
J-PEK (Jurnal Pembelajaran Kimia) Vol 5, No 1 (2020): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v5i12020p047

Abstract

The purpose of this research measured the ability of critical thinking skills on hydrocarbon topic with focused on the further-explanation-indicators in 11th MIA grade students 2018/2019 academic year. This research used a descriptive quantitative research design. The data was analyzed came from 133 students test results in answering questions of critical thinking skills instrument what developed by Rodliyah (2018). The aspect of critical thinking skills with the further-explanation-indicators consisting of five reasoned multiple choice questions. Analyzing were done from students’s answering whose 1 scored, then categorized by percentage according to Karim (2015). The results showed that students had critical thinking skills with the further-explanation-indicators on hydrocarbon topic including a) 57,90% on the subject of isomeric hydrocarbon compounds (low category), b) 67,67% on the subject of the use of hydrocarbon compounds (average category), c) 89,47% on the subject of the physical and chemical properties of hydrocarbon compounds : the physical properties of hydrocarbon compounds (very high category), d) 55,64% on the subject of the physical and chemical properties of hydrocarbon compounds : combustion reaction of hydrocarbon compounds (low category), and e) 11,28% on the subject of nomenclature of hydrocarbon compounds (very low category).
PENGEMBANGAN LEMBAR KEGIATAN PESERTA DIDIK (LKPD) BERBASIS SEARCH, SOLVE, CREATE AND SHARE (SSCS) PADA POKOK BAHASAN KESETIMBANGAN ION DAN pH LARUTAN PENYANGGA Noni Noviyanti; Sri Haryati; Herdini Herdini
J-PEK (Jurnal Pembelajaran Kimia) Vol 5, No 1 (2020): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v5i12020p008

Abstract

Pengembangan LKPD berbasis SSCS pada pokok bahasan kesetimbangan ion dan pH larutan penyangga bertujuan untuk mengembangkan bahan ajar yang valid. Penelitian menggunakan metode penelitian pengembangan (Research and Development, R&D) dengan model pengembangan 4-D yang meliputi Define, Design, Develop dan Disseminate, karena keterbatasan waktu penelitian ini hanya dilakukan sampai tahap Develop diikuti uji coba satu-satu, uji coba kepada guru dan uji coba kelompok kecil. Instrument pengumpulan data adalah lembar validasi dan kuisioner responden. Teknik analisis data yaitu dengan cara menghitung skor persentase penilaian validasi dan respon pengguna. Hasil penelitian menunjukkan bahwa LKPD berbasis SSCS yang dikembangkan memenuhi kriteria valid oleh 3 orang validator berdasarkan aspek isi, karakteristik SSCS, kebahasaan, peyajian dan kegrafisan dengan skor 92,72%. Uji coba satu-satu dilakukan terhadap 6 orang peserta didik, peserta didik telah mampu mengerjakan LKPD dengan baik dan diperoleh waktu pengerjaan, serta saran dan komentar peserta didik terhadap LKPD. Hasil uji respon pengguna oleh 2 orang guru dan 20 orang peserta didik termasuk ke dalam kriteria sangat baik dengan masing-masing skor sebesar 95,54% dan 90,714%.
Concrete Model VS Virtual Model: Roles and Implications in Chemistry Learning Thayban Thayban; Habiddin Habiddin; Yudhi Utomo
J-PEK (Jurnal Pembelajaran Kimia) Vol 5, No 2 (2020): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v5i22020p090

Abstract

Mastering the topic of symmetry requires a good representational competence to smoothly understand, visualize, and manipulate the movement of three-dimensional objects. This literature study aimed to describe how concrete and virtual media can be utilized in improving students’ understanding of the topic. The study implies that the thinking process, cognitive tasks, interactions, mental models, and the completeness features displayed by the two models in identifying all symmetrical operations are the distinguishing factors of the effectiveness of the two formats in affecting students’ understanding. The study also implies that the virtual format will contribute to students’ understanding better than the concrete format does. However, the empirical study must be explored further to ensure the difference between the two formats.
Chemical Literacy of First Year Students on Carbon Chemistry Nursida Djaen; Sri Rahayu; Yahmin Yahmin; Muntholib Muntholib
J-PEK (Jurnal Pembelajaran Kimia) Vol 6, No 1 (2021): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v6i12021p041

Abstract

This research aims to develop and validate chemical literacy test instruments on competency and knowledge aspects and to measure the chemical literacy of first-year science education students. Instrument development involved expert consultation, expert judgment, and testing of 114 first-year students majoring in chemistry for the analysis of item validity and instrument reliability.  The instrument was developed using the  Research& Development model by Borg and Gall (1989). The developed instrument consisted of 30 valid item items with Cronbach's Alpha reliability coefficient of 0.718. The analysis was carried out on 28 first-year students of the Jember State University Science Education Study Program who had studied carbon chemistry. Data analysis showed that the average score of students' chemical literacy was 59.7 in the moderate category.ReferencesAdawiyah, R., & Wisudawati, A. (2017). Pengembangan instrumen tes berbasis literasi sains. Indonesian Journal of Curriculum and Educational Technology Studies, 5(2), 112–121.Akengin, H., & Sirin, A. (2013). A comparative study upon determination of scientific literacy level of teacher candidates. Educational Research and Reviews, 8(19), 1882–1886.Arikunto, S. (2012). Dasar-dasar evaluasi pendidikan edisi 2. Jakarta: Bumi Aksara.Assessment, P. for I. S., & service), S. (Online. (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Publications de l’OCDE.Barnea, N., Dori, Y. J., & Hofstein, A. (2010). Development and implementation of inquiry-based and computerized-based laboratories: Reforming high school chemistry in Israel. Chemistry Education Research and Practice, 11(3), 218–228.Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. ERIC.Celik, S. (2014). Chemical literacy levels of science and mathematics teacher candidates. Australian Journal of Teacher Education, 39(1), 1.Cigdemoglu, C., Arslan, H. O., & Cam, A. (2017). Argumentation to foster pre-service science teachers’ knowledge, competency, and attitude on the domains of chemical literacy of acids and bases. Chemistry Education Research and Practice, 18(2), 288–303.Cigdemoglu, Ceyhan, & Geban, O. (2015). Improving students’ chemical literacy levels on thermochemical and thermodynamics concepts through a context-based approach. Chemistry Education Research and Practice, 16(2), 302–317.De Ovira, E. (2018). PENGEMBANGAN DAN VALIDASI TES KIMIA DENGAN FRAMEWORK PISA PADA MATERI KELAS XI SEMESTER 1. Menara Ilmu, 12(80).DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(6), 582–601.Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education.Gall, M. D., & Borg, W. R. (1989). Educational Research. A Guide for Preparing a Thesis or Dissertation Proposal in Education. ERIC.Gerlach, K., Trate, J., Blecking, A., Geissinger, P., & Murphy, K. (2014). Valid and reliable assessments to measure scale literacy of students in introductory college chemistry courses. Journal of Chemical Education, 91(10), 1538–1545.Gurel, D. K., Eryilmaz, A., & McDermott, L. C. (2015). A review and comparison of diagnostic instruments to identify students’ misconceptions in science. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 989–1008.Impey, C. (2013). Science literacy of undergraduates in the united states. Organizations, people and strategies in astronomy, 2(2), 353–364.Kemendikbud, R. I. (2014). Permendikbud No. 49 Tahun 2014 tentang Standar Nasional Pendidikan Tinggi. Jakarta: Kemendikbud.Laugksch, R. C., & Spargo, P. E. (1996). Development of a pool of scientific literacy test-items based on selected AAAS literacy goals. Science Education, 80(2), 121–143.Miller, J. D. (1983). Scientific literacy: A conceptual and empirical review. Daedalus, 29–48.Muntholib, M., Ibnu, S., Rahayu, S., Fajaroh, F., Kusairi, S., & Kuswandi, B. (2020). Chemical Literacy: Performance of First Year Chemistry Students on Chemical Kinetics. Indonesian Journal of Chemistry.Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science education, 87(2), 224–240.Norris, S. P., & Phillips, L. M. (2009). Scientific literacy. The Cambridge handbook of literacy, 271–285.OECD, F. (2016). FDI in Figures. Organisation for European Economic Cooperation Paris.OECD, P. (2015). Assessment and analytical framework: Science. Reading, Mathematic and Financial Literacy,(Interscience: Paris, 2016), 24–25.Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections (Vol. 13). London: The Nuffield Foundation.Permendikbud, R. I. (t.t.). Nomor 59 tahun 2014 Tentang Kurikulum 2013 Sekolah Menengah Atas. Madrasah Aliyah, Jakarta: Depdikbud.Rahayu, S. (2017). Mengoptimalkan aspek literasi dalam pembelajaran kimia abad 21. Prosiding Seminar Nasional Kimia UNY, 319–324.Rifal, M., & Rauf, W. (2018). Analisis Penggunaan Bahan Bakar Etanol-Pertalite Pada Motor Honda Scoopy 110 cc. Gorontalo Journal of Infrastructure and Science Engineering, 1(1), 55–64.Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2006). The use of scientific literacy taxonomy for assessing the development of chemical literacy among high-school students. Chemistry Education Research and Practice, 7(4), 203–225.Sumarni, W., Supardi, K. I., & Widiarti, N. (2018). Development of assessment instruments to measure critical thinking skills. IOP Conference Series: Materials Science and Engineering, 349(1), 012066.Sunarti, T. (2015). Pemahaman literasi sains mahasiswa calon guru fisika Universitas Negeri Surabaya. Seminar Nasional Fisika dan Pembelajarannya, 2015, 34–39.Tarhan, L., & Sesen, B. A. (2010). Investigation the effectiveness of laboratory works related to “acids and bases” on learning achievements and attitudes toward laboratory. Procedia-Social and Behavioral Sciences, 2(2), 2631–2636.Thummathong, R., & Thathong, K. (2018). Chemical literacy levels of engineering students in Northeastern Thailand. Kasetsart Journal of Social Sciences, 39(3), 478–487.Traiwichitkhun, D., & Wongwanich, S. (2014). Causal Model of Research Competency via Scientific Literacy of Teacher and Student Lertporn Udompong. Procedia-Social and Behavioral Sciences, 116, 1581–1586.Turiman, P., Omar, J., Daud, A. M., & Osman, K. (2012). Fostering the 21st century skills through scientific literacy and science process skills. Procedia-Social and Behavioral Sciences, 59, 110–116.
Analysis on the implementation of virtual versus reality laboratory Muhammad Fahmi Hakim; Apid Hapid Maksum; Yuliarman Saragih; Cintiya Septa Hasanah
J-PEK (Jurnal Pembelajaran Kimia) Vol 5, No 2 (2020): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v5i22020p059

Abstract

Chemistry learning involves theoretical education and practices. Laboratory infrastructure frequently becomes the primary obstacle. Generally, this research aims to provide an alternative solution for the limited learning resources in Universities, especially in practice courses. This research was specifically conducted to analyze the effect of the implementation of the virtual laboratory and reality laboratory through an experimental method. The research participants were 15 students from Singaperbangsa University Karawang. The participants were given seven questions to reveal the effects of a virtual and a real practice they had carried out. The analysis result on students’ answers identifies that the implementation of virtual lab reduces mistakes and work accidents usually happen in the real laboratory, and it can be an alternative for universities with problems in their laboratory facility. However, the virtual lab cannot fully replace real laboratory, since the level of experiences and skills provided by the virtual lab is not as desirable as the real laboratory. The student does not directly interact with tools and chemicals, so the virtual lab is more effective if it is applied as a preliminary practicum to support the understanding of the practicum in conducting real practicum in the laboratory.
Analysis of chemistry teachers' covalent bond conceptual understanding through diagnostic interview technique Muntholib Muntholib; Mashfufatul Ilmah; Yahmin Yahmin
J-PEK (Jurnal Pembelajaran Kimia) Vol 5, No 2 (2020): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v5i22020p108

Abstract

Conceptual understanding of the subject matter is crucial for teachers in conducting instruction. The covalent bond is one of the essential knowledge of chemistry. This knowledge underlies most of the chemistry body knowledge. The purpose of this study is to investigate the chemistry teachers' conceptual understanding of covalent bonds. This study applied a descriptive qualitative research design. The research subjects were eight chemistry teachers from different schools. Data collection was carried out using a diagnostic interview technique guided by the semi-structured interview protocol. Data analysis was performed using phenomenography techniques. The results show that 25.00% of the interviewees well understood the covalent bond concepts, 22.75% do not understand, and 52.25% have misconceptions. Chemistry teachers have misconceptions about the concepts of intents of atom forming bonds, coordination bonds, types of atoms that form covalent bonds, polar and nonpolar covalent bonds, the level of covalent bonds polarity, Lewis structure writing, and covalent bond length.
Development of Pisa 2015 Based Chemical Literacy Assessment Instrument For High School Students Fika Aning Tiara; Oktavia Sulistina
J-PEK (Jurnal Pembelajaran Kimia) Vol 6, No 1 (2021): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v6i12021p026

Abstract

This study aims to develop valid and reliable chemical literacy assessment instruments based on PISA 2015. The development procedures carried out were 1) research and information collecting, 2) planning, 3) development preliminary form of product, 4) preliminary field testing, and 5) main product revision. Instrument of development result was validated(content validity and empirical validity). Content validity assessment data was obtained from the validity test results from two chemistry lecturers. Empirical validity test data were acquired from68 grade XI students as test subjects who came from five high schools in Malang. An empirical validity test was used to obtain the level of validity, reliability, discrimination index, difficulty level, and effectiveness of distractors of the items developed in the instrument. The instrument of development results consisted of 20 multiple choice items and 4 attitude questionnaires. The results of the content validity test indicated a valid instrument (the average score for the aspects of substance, construction, and language was 83.9). The results of the empirical validity test showed that multiple-choice items had a correlation value of 0.37-0.77, categorized as valid, and the reliability value was 0.86, classified as highly reliable. The discrimination index obtained was five items ranked as sufficiently good and 15 items categorized as good, while five items classified as easy item, 14 moderate items, and one difficult item, all distractors were functioning. The empirical validity test results in the form of an attitude questionnaire showed a correlation value of 0.65-0.69, so they were valid, and the reliability value was 0.59, classified as quite high criteria. Instrument development results proved to be valid and reliable, so it is feasible to be used to measure students' chemical literacy skills.ReferencesAmerican Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy: a project 2061 report. New York: Oxford University Press.Arikunto, S. (1993). Dasar-Dasar Evaluasi Pendidikan. Jakarta: Bumi Aksara.Bond, D. (1989). In Pursuit of Chemical Literacy: A Place for Chemical Reactions. Journal of Chemical Education, 66(2), 157.Celik, S. (2014).Chemical Literacy Levels of Science And Mathematics Teacher Candidates. Australian Journal of Teacher Education, 39(1), 1 – 15Cigdemoglu, C., & Geban, O. (2015). Improving Students' Chemical Literacy Level on Thermochemical And Thermodynamics Concepts through Context-Based Approach. Chemistry Education Research And Practice, 16, 302 – 317.Cigdemoglu, C., Arslan, H. O., & Cam, A. (2017).Argumentation to Foster Pre-Service Science Teachers' Knowledge, Competency, And Attitude on The Domains of Chemical Literacy of Acids And Bases. Chemistry Education Research And Practice, 18(2), 288 – 303.Direktorat Pembinaan SMA. (2017). Panduan Penilaian oleh Pendidik dan Satuan Pendidikan Sekolah Menengah Atas. Jakarta: Kementerian Pendidikan dan Kebudayaan RI.Kohen, Z., Herscovitz, O., & Dori, Y. J. (2020). How to Promote Chemical Literacy? Online Question Posing And Communicating With Scientists. Chemistry Education Research And Practice, 21(1), 250 – 266Mudiono, A. (2016). Keprofesionalan Guru dalam Menghadapi Pendidikan di Era Global. Makalah disajikan dalam Seminar Nasional, Jurusan KSDP FIP UM, Malang 25 September.Mumba, F., & Hunter, W. J. F. (2009). Representative Nature of Scientific Literacy Themes in A High School Chemistry Course: The Case of Zambia. Chemistry Education Research And Practice, 10(3), 219 – 226.Naganuma, S. (2017). An Assessment of Civic Scientific Literacy in Japan: Development of A More Authentic Assessment Task And Scoring Rubric. International Journal of Science Education, Part B, 7(4), 301 – 322Norris, S. P., & Philip, L. M. (2003). How literacy in its fundamental sense in central to scientific literacy. Science Education, 87(2), 224 – 240.Organisation for Economic Co-operation and Development (OECD). (2016). PISA 2015 Assessment And Analytical Framework: Science, Reading, Mathematic And Financial Literacy. Paris: OECD PublishingOrganisation for Economic Co-operation and Development (OECD). (2018). PISA 2018 Result Combined Executive Summaries Volume I, II, & III. Paris: Organisation for Economic Co-operation and Development.Osborne, J. F. (2010). Arguing to Learn in Science: The Role of Collaborative, Critical Discourse. Science, 328(5977), 463 – 466Rahayu, S. (2014). Menuju Masyarakat Berliterasi Sains: Harapan dan Tantangan Kurikulum 2013. Makalah disajikan dalam Seminar Nasional Kimia dan Pembelajarannya, Jurusan Kimia FMIPA UM, Malang 6 September.Rahayu, S. (2017). Mengoptimalkan Aspek Literasi dalam Pembelajaran Kimia Abad 21. Makalah disajikan dalam Seminar Nasional Kimia, Jurusan Pendidikan Kimia FMIPA UNY, Yogyakarta, 14 Oktober.Riduwan. (2011). Belajar Mudah Penelitian: untuk Guru-Karyawan, dan Peneliti Pemula. Bandung: AlfabetaRiduwan. (2013). Dasar-Dasar Statistika. Bandung: AlfabetaShe, H. C., Stacey, K., & Schmidt, W. H. (2018).Science And Mathematics Literacy: PISA for Better School Education. International Journal of Science And Mathematics Education, 16(1), 1 – 5Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2005). The Importance of Involving High-School Chemistry Teachers in The Process of Defining the Operational Meaning of Chemical Literacy. International Journal of ScienceEducation, 27(3), 323 – 344.Thummathong, R., & Thathong, K. (2016). Construction of A Chemical Literacy Test for Engineering Students. Journal of Turkish Science Education, 13(3), 185 – 198.United Nations Environment Programme (UNEP). (2012). 21 Issues for the 21st Century: Result of the UNEP Foresight Process on Emerging Environmental Issues. Nairobi, Kenya: United Nations Environment Programme.Vogelzang, J., Admiraal, W. F., & van Driel, J. H. (2020). Effects of Scrum Methodology on Students' Critical Scientific Literacy: The Case of Green Chemistry. Chemistry Education Research And Practice, 21(3), 940 – 952.World Economic Forum (WEF). (2016). New Vision for Education: Fostering Social And Emotional Learning through Technology.
The implementation of guided inquiry learning model to enhance students’ critical thinking skills on reaction rate topic: the case of an Indonesian public school Efi Pujianti Puspita Dewi; Ratman Ratman; Kasmudin Mustapa
J-PEK (Jurnal Pembelajaran Kimia) Vol 5, No 2 (2020): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v5i22020p066

Abstract

The main objective of this research was to find out whether the implementation of guided inquiry learning model can improve students' critical thinking skills on the reaction rate topic at one public school located in Central Sulawesi, Indonesia. Experimental research method was used in this study pretest-posttest design. Two science program classes at the grade 11 were recruited. Both were assigned as experimental class 1 and experimental class 2. To measure students' critical thinking skills, the instruments used were critical thinking skills tests and observation sheets. Findings suggest that the critical thinking skills of students in the experimental class 1 was 44% which was in the very high category, 36% of them included in the high category, and 20% included in the medium category. In contrast, in the experimental class 2, students' critical thinking skills were 52% and included in the very high category, 24% of them included in the high category, and 24% included in the medium category. In addition, the N-gain test showcased that the average value for experimental class 1 was 0.75 (the high category) and experimental class 2 was 0.77 (the high category). Our findings concluded that the guided inquiry learning model can improve students' critical thinking skills on the reaction rate topic.
Interactive Instructional: Theoretical Perspective and Its Potential Support in Stimulating Students’ Higher Order Thinking Skills (HOTS) Rafika Fauzia Ulfa; Habiddin Habiddin; Yudhi Utomo
J-PEK (Jurnal Pembelajaran Kimia) Vol 6, No 1 (2021): J-PEK (JURNAL PEMBELAJARAN KIMIA)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um026v6i12021p001

Abstract

In this disruptive era, the success of teaching approaches that encourage students’ creativity and innovation is presented in students’ attained high-order thinking skills (HOTS). Consequently, the attainment of HOTS aids someone to avert negative things since they are capable of analyzing and evaluating their obtained information. Besides, HOTS also facilitates the process of students attaining knowledge, generating questions, properly interpreting information, and drawing a conclusion for an issue, with solid reasons, an open mind, and an effective means to communicate it. This article presents a theoretical study on the interactive instructional learning model and identifies its potential in accelerating students’ HOTS. It aims to introduce the interactive instructional model in chemistry learning. Further, this model can be adopted in a study with a more intensive evaluation of its empirical contribution to chemistry learning. The learning syntax for this model has been formulated for the Basic Chemistry Class 1.ReferencesBrookhart, S. M. (2010). How To Assess Higher Order thinking Skills in your classroom. Alexandria.Fearon, D. D., Copeland, D., & Saxon, T. F. (2013). The Relationship Between Parenting Styles and Creativity in a Sample of Jamaican Children. Creativity Research Journal, 25(1), 119–128. https://doi.org/10.1080/10400419.2013.752287Ghani, I. . B. ., Ibrahim, N. ., Yahaya, N. ., & Surif, J. (2017). Enhancing students’ HOTS in laboratory educational activity by using concept map as an alternative assessment tool. Chemistry Education Research and Practice, 18(4), 849–874. https://doi.org/10.1039/C7RP00120GHabiddin, H., & Page, E. M. (2020). Probing Students’ Higher Order Thinking Skills Using Pictorial Style Questions. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 251–263. https://doi.org/10.20450/mjcce.2020.2133Habiddin, H., & Page, E. M. (2021). Examining Students’ Ability to Solve Algorithmic and Pictorial Style Questions in Chemical Kinetics. International Journal of Science and Mathematics Education, 19(1), 65–85. https://doi.org/10.1007/s10763-019-10037-wHabiddin, H., & Page, E. M. (2018). Measuring Indonesian chemistry students’ Higher Order Thinking Skills (HOTS) in solving chemical kinetics questions. In Y. Rahmawati & P. C. Taylor (Eds.), Empowering Science and Mathematics for Global Competitiveness; Proceedings of the Science and Mathematics International Conference (SMIC 2018) (pp. 215–222). CRC Press Taylor & Francis.Heong, Y. M., Sern, L., Kiong, T. T., & Mohamad, M. (2016). The Role of Higher Order Thinking Skills in Green Skill Development.Herunata, H., Widarti, H. R., Amalia, R., Sulistina, O., Habiddin, H., & Rosli, M. S. bin. (2020). An analysis of higher order thinking skill (HOTs) in chemistry national examination for senior high school. AIP Conference Proceedings, 2215(1), 20009. https://doi.org/10.1063/5.0000639Horan, R. (2007). The Relationship Between Creativity and Intelligence: A Combined Yogic-Scientific Approach. Creativity Research Journal, 19(2–3), 179–202. https://doi.org/10.1080/10400410701397230Lather, A. S., Jain, S., & Shukla, A. D. (2014). Student’s Creativity in Relation to Locus of Control: a Study of Mysore University, India. The International Journal of Indian Psychȯlogy , 2(1), 146–165. http://ijip.in/article-details/?dip=18-01-058-20140201Lewis, A., & Smith, D. (1993). Defining Higher Order Thinking. Theory Into Practice, 32(3), 131–137.Lim, S., & Smith, J. (2008). The Structural Relationships of Parenting Style, Creative Personality, and Loneliness. Creativity Research Journal, 20(4), 412–419. https://doi.org/10.1080/10400410802391868McLoughlin, D., & Mynard, J. (2009). An analysis of higher order thinking in online discussions. Innovations in Education and Teaching International, 46(2), 147–160.Narciss, S. (2007). Feedback Strategies for Interactive Learning Tasks. In Handbook of Research on Educational Communications and Technology. Routledge. https://doi.org/10.4324/9780203880869.ch11Paideya, V., & Sookrajh, R. (2010). Exploring the use of supplemental instruction: Supporting deep understanding and higher-order thinking in Chemistry. South African Journal of Higher Education, 24(5), 758–770.Pannells, T. C., & Claxton, A. F. (2008). Happiness, creative ideation, and locus of control. Creativity Research Journal, 20(1), 67–71. https://doi.org/10.1080/10400410701842029Phakiti, A. (2018). Assessing Higher-Order Thinking Skills in Language Learning. In The TESOL Encyclopedia of English Language Teaching (pp. 1–7). https://doi.org/doi:10.1002/9781118784235.eelt0380Proske, A., Körndle, H., & Narciss, S. (2012). Interactive Learning Tasks BT  - Encyclopedia of the Sciences of Learning (N. M. Seel (ed.); pp. 1606–1610). Springer US. https://doi.org/10.1007/978-1-4419-1428-6_1100Resnick, L. B. (1987). Education and Learning to Think. National Academy Press.Toledo, S., & Dubas, J. M. (2016). Encouraging Higher-Order Thinking in General Chemistry by Scaffolding Student Learning Using Marzano’s Taxonomy. Journal of Chemical Education, 93(1), 64–69. https://doi.org/10.1021/acs.jchemed.5b00184Zohar, A. (2004). Elements of Teachers’ Pedagogical Knowledge Regarding Instruction of Higher Order Thinking. Journal of Science Teacher Education, 15(4), 293–312. https://doi.org/10.1023/B:JSTE.0000048332.39591.e3Zohar, A., & Dori, Y. J. (2003). Higher Order Thinking Skills and Low-Achieving Students: Are They Mutually Exclusive? Journal of the Learning Sciences, 12(3), 145–181. https://doi.org/10.1207/S15327809JLS1202_1Zoller, U, & Dori, Y. J. (2002). Algorithmic, LOCS and HOCS (chemistry) exam questions: performance and attitudes of college students. International Journal of Science Education, 24(2), 185–203. https://doi.org/10.1080/09500690110049060Zoller, Uri, & Pushkin, D. (2007). Matching Higher-Order Cognitive Skills (HOCS) promotion goals with problem-based laboratory practice in a freshman organic chemistry course. Chemistry Education Research and Practice, 8(2), 153–171

Page 6 of 11 | Total Record : 105