Claim Missing Document
Check
Articles

Sistem Rekomendasi Masjid Ramah Pemudik Menggunakan Hybrid Rating Aggregation dan Location Based Filtering Berbasis Ulasan Pengguna (Studi Kasus Kabupaten Situbondo) Rhomadon, Rifal Rifqi; Irawan, Joseph Dedy; Wahyuni, Febriana Santi
JUSIFOR : Jurnal Sistem Informasi dan Informatika Vol 4 No 2 (2025): JUSIFOR - Desember 2025
Publisher : Fakultas Sains Dan Teknologi, Universitas Raden Rahmat Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/jusifor.v4i1.8339

Abstract

The tradition of mudik in Indonesia increases public mobility during the festive season, including in Situbondo Regency. This condition creates a need for information about traveler-friendly mosques that can serve as places of worship as well as rest areas. However, limited information regarding mosque facilities and comfort often makes it difficult for travelers to find suitable locations. This study aims to develop traveler-friendly mosque recommendation system using the Hybrid Rating Aggregation and Location-Based Filtering methods based on user reviews. Sentiment analysis on user reviews was carried out using the Lexicon-Based Sentiment Analysis method to determine the tendency of positive or negative opinions toward each mosque. The result of the sentiment analysis are incorporated into scoring mechanism to improve the accuracy nor suitability of those recommendations. Performance system was performed using blackbox testing approach to verify that each feature performs as expected based on user needs. The results indicate that system operates effectively and is able to deliver mosque recommendations that are informative, reliable, and user-friendly.
Development of the 3D Game “Lavender's Warmth” Using the Collision Detection Method Nayottama, Nayaka Apta; Wahyuni, Febriana Santi; Zahro, Hani Zulfia
JISA(Jurnal Informatika dan Sains) Vol 8, No 2 (2025): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v8i2.2558

Abstract

This study presents the development of a 3D puzzle–adventure game titled “Lavender’s Warmth” using the Collision Detection and Finite-State Machine (FSM) methods. The use of Collision Detection is essential because the game relies heavely in physical interaction between puzzle pieces, slots, and environmental object. Without Collision Detection, the game would fail to validate puzzle placement. Meanwhile, the FSM approach is required to regulate enemy behaviour in structured manner. The Finite-State Machine was chosen because it is one of the most widely adopted approaches for modeling NPC behavior, offering deterministic transitions, low memory usage, and ease of debugging. Alternative techniques such as behavior trees or utility AI are more complex and unnecessary for the simple enemy mechanics in this game. Therefore, Finite-State Machine provides the most appropriate balance between functionality, performance, and development simplicity. The game was developed using Unity 3D and tested through functionality, method, and user evaluations. The results showed that all main features worked as expected, with 52.63% of users strongly agreeing and 40.64% agreeing that the game was engaging and enjoyable. The implementation of both methods successfully enhanced interactivity, responsiveness, and gameplay consistency. 
Implementasi Convolutional Neural Network (CNN) untuk Face Recognition pada Sistem Presensi Kehadiran Moch Arif Rochmanullah; Nurlaily Vendyansyah; Febriana Santi Wahyuni
IJAI (Indonesian Journal of Applied Informatics) Vol 9, No 2 (2025)
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/ijai.v9i2.95563

Abstract

Abstrak : Sistem presensi merupakan elemen penting dalam memastikan kehadiran, terutama di lingkungan pendidikan dan pekerjaan. Penelitian ini bertujuan mengembangkan sistem presensi berbasis face recognition menggunakan metode Convolutional Neural Network (CNN) untuk mengatasi kelemahan presensi manual yang rentan terhadap kecurangan, seperti di Prodi Teknik Informatika ITN Malang. Model CNN dilatih dengan deep learning menggunakan dataset wajah mahasiswa untuk mengenali pola unik fitur wajah. Hasilnya, model mencapai training accuracy sebesar 97%, validation accuracy sebesar 90%, dan pengujian mencapai accuracy 93%. Sistem ini meningkatkan efisiensi absensi dan akurasi identifikasi hingga 93%, sekaligus mengurangi potensi kecurangan.CNN terbukti andal dalam mendukung presensi berbasis teknologi dengan pengelolaan lebih praktis. Kendati demikian, performa model masih dapat ditingkatkan melalui pengayaan dataset dan optimasi model. Sistem ini berpotensi besar meningkatkan keandalan dan keamanan proses presensi, menjadi solusi inovatif dalam pengelolaan kehadiran di era digital.=====================================================Abstract :The attendance system is a crucial element in ensuring presence, especially in educational and workplace settings. This study aims to develop a face recognition-based attendance system using the Convolutional Neural Network (CNN) method to address the weaknesses of manual attendance prone to fraud, as observed in the Informatics Engineering Study Program at ITN Malang. The CNN model was trained using deep learning techniques with a student face dataset to recognize unique facial features. The results show the model achieved a training accuracy of 97%, validation accuracy of 90%, and testing accuracy of 93%. This system improves attendance efficiency and identification accuracy by 93%, while reducing the potential for fraud. CNN has proven reliable in supporting technology-based attendance with more practical management. However, the model’s performance can still be improved through dataset enrichment and optimization. This system holds significant potential to enhance the reliability and security of attendance processes, providing an innovative solution for managing attendance in the digital era.
Aplikasi Presensi Siswa Berbasis Location Based Services (LBS) Dengan Haversine Formula Di SMK Islam Al-Futuhiyyah Mohammad Harifin; Nurlaily Vendyansyah; Febriana Santi Wahyuni
IJAI (Indonesian Journal of Applied Informatics) Vol 9, No 2 (2025)
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/ijai.v9i2.95566

Abstract

Abstrak : Perkembangan teknologi informasi membawa dampak signifikan di bidang pendidikan, termasuk dalam sistem presensi siswa. Penelitian ini bertujuan untuk mengembangkan aplikasi presensi siswa berbasis Android dengan menggunakan metode Location Based Services (LBS) di SMK Islam Al-Futuhiyyah. Metode yang digunakan adalah Research and Development (R&D) dengan model pengembangan perangkat lunak Waterfall, meliputi analisis kebutuhan, desain, implementasi, pengujian, dan evaluasi. Aplikasi ini menggunakan metode Haversine untuk mengukur jarak antara lokasi siswa dan lokasi sekolah, sehingga memastikan presensi dilakukan di area yang telah ditentukan. Hasil pengujian menunjukkan bahwa aplikasi ini berhasil memvalidasi presensi dengan akurasi tinggi, di mana Haversine Formula menghasilkan akurasi presensi hingga 100%. Pengujian Black Box memastikan semua fungsi aplikasi berjalan sesuai spesifikasi, sedangkan pengujian LBS membuktikan keakuratan dalam mendeteksi lokasi siswa. Selain itu, berdasarkan User Acceptance Testing (UAT) yang melibatkan siswa dan guru, aplikasi ini memperoleh skor kepuasan 81,7%. Aplikasi ini juga mempermudah siswa dalam melakukan presensi, sekaligus membantu guru dan operator sekolah dalam memantau dan mengelola data presensi. Implementasi aplikasi ini memberikan solusi efektif dan efisien untuk menggantikan metode presensi manual yang kurang praktis. Penelitian ini diharapkan dapat meningkatkan kualitas layanan pendidikan di SMK Islam Al-Futuhiyyah dan menjadi referensi bagi pengembangan sistem presensi berbasis teknologi di lembaga pendidikan lainnya===================================================Abstract : The development of information technology has a significant impact on the field of education, including in the student attendance system. This study aims to develop an Android-based student attendance application using the Location Based Services (LBS) method at SMK Islam Al-Futuhiyyah. The method used is Research and Development (R&D) with the Waterfall software development model, including needs analysis, design, implementation, testing, and evaluation. This application uses the Haversine method to measure the distance between the student's location and the school location, thus ensuring that attendance is carried out in a predetermined area. The test results show that this application has successfully validated attendance with high accuracy, where the Haversine Formula produces attendance accuracy of up to 100%. Black Box testing ensures that all application functions run according to specifications, while LBS testing proves accuracy in detecting student locations. In addition, based on User Acceptance Testing (UAT) involving students and teachers, this application received a satisfaction score of 81,7% This application also makes it easier for students to take attendance, while helping teachers and school operators to monitor and manage attendance data. The implementation of this application provides an effective and efficient solution to replace the less practical manual attendance method. This research is expected to improve the quality of educational services at Al-Futuhiyyah Islamic Vocational School and become a reference for the development of technology-based attendance systems in other educational institutions.
Co-Authors Abdul Wahid Adi Pratama, Sena Adtya Baskara, Galih Agung Panji Sasmito AHMAD FAISOL Ahmad Ridwan Akbar Setiawan, Farhan Ali Mahmudi Ali Mashudi, Rafiu Andrianto, Erfanda Ari Ramadhan, Muhammad Ariobimo Wijaya, Dhiemas Ariwibisono, F.X Arniyanto, Muhammad Dwi Arya Lutfi, Muhammad Asyam Naufal, Kasih Benjamin Maahury, David Budi Fathony Deddy Rudhistiar Desmile, Janico Diouf Ghiffary, Fiqih Dwi Yulianto, Afri Dzulfikar, Ahmad Eksanti Saragih, Dewi Fahrudi Setiawan, Ahmad Firstiano, Ivo Furqon, Moch Nurul Ghani Muttaqin, Abdul Ghozy, Ahmad Hani Zulfia Zahro Hasfa, Firmansyah Hidayati, Nofia Holifah, Musdholi Indriastuti, Ira Inzanul Huda, Muhammad Irmalia Suryani Faradisa Jalu Kinayun, Surya Janeananto Sanjaya, Andrew Karina Auliasari Kevin Merico Setiawan Kurniawan, Moch. Rizal Lakzmi, Prita Patricia Like Titi Sanjaya, Jecky Mega Aliesa WP, Pramesty Mira Orisa Moch Arif Rochmanullah Mohammad Harifin Muhammad Rizal Pahlawan, Rifki Nayottama, Nayaka Apta Nugroho Syahputro, Fadhil Nurlaily Vendyansyah Prismaswara Prasetya , Renaldi Pristiani, Tenti Purwanti, Prasiska Dwi Ra'uf, Abdur Rafi, Mochammad Rega Firmansyah, Dicky Renaldi Primaswara Prasetya Revano Budiansyah, Moch Rhomadon, Rifal Rifqi Rizki, Fakhrizal Rizky Aditya Juniantoro, Mochammad rosada, uyun Roudhotul Rohmah, Iva Sabilur Rosyad, Hilal Sakrani, Fikriadi Sandy Nataly Mantja Sandy Nataly Mantja, Sandy Nataly Saputra, Dwi Adi Satrio, Imam Sentot Achmadi Sidik Noertjahjono Suryo Adi Wibowo Taralandu, Deriatno Vendiansyah, Nurlaily Wibowo, Nungki Widhi Nugraha, Brilliananda Willyam Saputra, Leonardo Xaverius Ariwibisono, Franciscus Xaverius Ariwibisono, Fransiskus Yosep Agus Pranoto Zidan Rusminto, Muhammad Zufar Ardana, Fadel Zulfia Zahro’, Hani Zulfia, Hani