Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Vicinity Monitoring of Military Vehicle Cabin to Improve Passenger Comfort with Fusion Sensors and LoRa RFM95W Fadillah, Wildan Muhammad Yasin; Mutiara, Giva Andriana; Periyadi, Periyadi; Alfarisi, Muhammad Rizqy; Meisaroh, Lisda
Journal of Robotics and Control (JRC) Vol 5, No 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.21600

Abstract

The application and utilization of technology to measure the level of comfort in mass-produced vehicles, including military vehicles, is constantly evolving. Currently, the testing of comfort parameters is carried out manually through human-driven test drives. Thus, the range of variability in measurements is extensive as it depends on the subjective experiential indications of experts.  This research utilizes KY-037 sensor to measure noise level and BME280 sensor fusion to detect temperature, air pressure, humidity, and altitude.  These parameters have a significant impact on passenger comfort inside the passenger cabin of military vehicles. This project included involves the development of LoRa-based communication medium using RFM95W technology. The system has extensive performance testing inside the passenger cabin of a military vehicle on various test area tracks. The test results indicate that the system is capable of accurately reading the KY-037 sensor, with a range of 80 - 141 dB depending on the tracks. The BME280 sensor consistently measures a temperature of 36,98°C, altitude readings ranging from 667-677 meter above sea level, maintaining a stable air pressure of 955.35 hPa, and measuring the lowest humidity level in the vehicle cabin at 24.34%. The LoRa technology possesses remarkable to extend the communication range, even in challenging environments, reaching distances over 2 kilometers. The response time for data sent in web-based applications consistently remains below 1 second. Thus, this system can assist experts in enhancing cabin passenger comfort standards by narrowing the range and making it more measurable.
Improving the Productivity of Laying Hens Through a Modern Cage Cleanliness Monitoring System that Utilizes Integrated Sensors and IoT Technology Ishak, Fauzi; Wardhana, Ichlasul Amal Restu; Mutiara, Giva Andriana; Periyadi, Periyadi; Meisaroh, Lisda; Alfarisi, Muhammad Rizqi
Journal of Robotics and Control (JRC) Vol 5, No 4 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i4.21610

Abstract

Animal husbandry plays a crucial role in the Indonesian economy. One example is layer farming. The cage's environmental conditions can have an impact on the health of laying hens, including factors like temperature, humidity, and the presence of ammonia gas. This research aims to support chicken farmers in identifying and monitoring the environmental conditions surrounding their chicken coops, with the goal of enhancing the productivity of laying hens. This study is organized using a prototype development approach. The proposed system utilizes Arduino UNO as a microcontroller, ESP32 as a connecting node from hardware to software, MQ-135 sensor as an ammonia gas sensor, DHT-22 sensor as a temperature and humidity sensor, and 16x2 I2C LCD to display the collected data. WIFI connected web monitoring system built with Laravel, MySQL, and Bootstrap. An improvement to the existing system is the integration of an ammonia gas odor sensor calibrated against clean air as a reference. Testing was conducted for a continuous period of 7 days. Comparison of test results is performed with existing devices to observe the difference in measured values. The measurement result demonstrates a remarkable ability to accurately measure temperature, humidity, and ammonia levels in the air. The difference with the comparable device was about 2%.  Meanwhile, the monitoring dashboard for IoT functional monitoring operates effectively, allowing chicken farmers to efficiently analyze the cleanliness of their chicken coops. All measurement parameters are conveniently recorded in the form of tables and graphs, providing valuable information.
Vicinity Monitoring of Military Vehicle Cabin to Improve Passenger Comfort with Fusion Sensors and LoRa RFM95W Fadillah, Wildan Muhammad Yasin; Mutiara, Giva Andriana; Periyadi, Periyadi; Alfarisi, Muhammad Rizqy; Meisaroh, Lisda
Journal of Robotics and Control (JRC) Vol. 5 No. 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.21600

Abstract

The application and utilization of technology to measure the level of comfort in mass-produced vehicles, including military vehicles, is constantly evolving. Currently, the testing of comfort parameters is carried out manually through human-driven test drives. Thus, the range of variability in measurements is extensive as it depends on the subjective experiential indications of experts.  This research utilizes KY-037 sensor to measure noise level and BME280 sensor fusion to detect temperature, air pressure, humidity, and altitude.  These parameters have a significant impact on passenger comfort inside the passenger cabin of military vehicles. This project included involves the development of LoRa-based communication medium using RFM95W technology. The system has extensive performance testing inside the passenger cabin of a military vehicle on various test area tracks. The test results indicate that the system is capable of accurately reading the KY-037 sensor, with a range of 80 - 141 dB depending on the tracks. The BME280 sensor consistently measures a temperature of 36,98°C, altitude readings ranging from 667-677 meter above sea level, maintaining a stable air pressure of 955.35 hPa, and measuring the lowest humidity level in the vehicle cabin at 24.34%. The LoRa technology possesses remarkable to extend the communication range, even in challenging environments, reaching distances over 2 kilometers. The response time for data sent in web-based applications consistently remains below 1 second. Thus, this system can assist experts in enhancing cabin passenger comfort standards by narrowing the range and making it more measurable.