This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Teknologi Informasi dan Ilmu Komputer Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika SMARTICS Journal INTECOMS: Journal of Information Technology and Computer Science J-SAKTI (Jurnal Sains Komputer dan Informatika) Jusikom: Jurnal Sistem Informasi Ilmu Komputer Zonasi: Jurnal Sistem Informasi Buana Information Technology and Computer Sciences (BIT and CS) REMIK : Riset dan E-Jurnal Manajemen Informatika Komputer JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) JIKA (Jurnal Informatika) Jurnal Sistem Komputer dan Informatika (JSON) Infotek : Jurnal Informatika dan Teknologi Journal of Applied Data Sciences Jurnal Cahaya Mandalika Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Pendidikan dan Teknologi Indonesia International Journal of Computer and Information System (IJCIS) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) KLIK: Kajian Ilmiah Informatika dan Komputer J-SAKTI (Jurnal Sains Komputer dan Informatika) Journal of Informatics and Communication Technology (JICT) Malcom: Indonesian Journal of Machine Learning and Computer Science JUSIFOR : Jurnal Sistem Informasi dan Informatika Innovative: Journal Of Social Science Research Jurnal Sistem Informasi dan Manajemen VISA: Journal of Vision and Ideas INTERNAL (Information System Journal) Journal of Informatics and Communication Technology (JICT) IKRAM: Jurnal Ilmu Komputer Al Muslim
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Applied Data Sciences

Classification of Starling Images Using a Bayesian Network Hananto, April Lia; Rahman, Aviv Yuniar; Paryono, Tukino; Priyatna, Bayu; Hananto, Agustia; Huda, Baenil
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.423

Abstract

The classification of starling species is vital for biodiversity conservation, especially as some species are endangered. This research investigates the effectiveness of the Bayesian Network (BayesNet) for classifying starling species and compares its performance with Artificial Neural Networks (ANN) and Naive Bayes models. The dataset comprises 300 images of five starling species—Bali, Rio, Moon, Kebo, and Uret—captured under controlled conditions. Feature extraction focused on color, texture, and shape, while data augmentation through slight image rotations was applied to enhance model generalization. The BayesNet model achieved an accuracy of 96.29% using a 90:10 training-to-testing split, outperforming ANN (90.74%) and Naive Bayes variants. Precision, recall, F1-score, and AUC-ROC values further validated the robustness of the BayesNet model, with precision at 0.90, recall at 0.91, F1-score at 0.92, and AUC-ROC at 0.95. These results demonstrate the superior performance of multi-feature Bayesian Networks in starling classification compared to other machine learning models. The novelty of this study lies in its application of a probabilistic approach using Bayesian Networks, which enhances interpretability and performance, especially in scenarios with limited data. Future work may explore additional feature sets and advanced machine learning models to further improve classification accuracy and robustness.