Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : VISA: Journal of Vision and Ideas

Logistic Regression Classification with TF-IDF and FastText for Sentiment Analysis of LinkedIn Reviews Nabila Sya’bani Wardana; Firza Prima Aditiawan; Anggraini Puspita Sari
VISA: Journal of Vision and Ideas Vol. 4 No. 3 (2024): VISA: Journal of Vision and Ideas
Publisher : IAI Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/visa.v4i3.2835

Abstract

Social media and professional networking platforms like LinkedIn have become crucial platforms for individuals to interact, share information, and build professional networks. Despite the significant benefits LinkedIn has provided to its users, there are still some limitations such as account restriction ambiguity, synchronization issues, and the emergence of spam and irrelevant content. Therefore, it is important to understand users' responses to the application. Previous research has shown that sentiment analysis can be an effective tool in understanding user reviews of applications. This study will continue previous research by analyzing the sentiment of user reviews of the LinkedIn application using the Logistic Regression method, taking into account the use of TF-IDF Feature Extraction and FastText Feature Expansion. Logistic Regression was chosen because it is effective in handling binary sentiment classification problems and has relatively high training speed. This method will be tested to address data imbalance and improve classification performance. This research demonstrates that this approach can provide optimal results in measuring accuracy, recall, precision, and F-Score. The research findings will provide valuable insights for LinkedIn application developers to enhance service quality. Based on the evaluation metrics, it can be observed that the first testing scheme with default parameters achieved an accuracy of 91.86%, a precision of 94.05%, a recall of 91.99%, and an F1-Score of 93.01%. The percentage values obtained already surpass 90%.
Co-Authors Achmad Junaidi Adzanil Rachmadhi Putra Afina Lina Nurlaili Agil Sakinah, Fenti Agung Mustika Rizki Agung Mustika Rizki Agung Mustika Rizki, Agung Mustika Akbar, Fawwaz Ali Akhmad Fauzi Al Fathoni, Hanif Alit, Ronggo Andreas Nugroho Sihananto Anggraini Puspita Sari Anggriawan, Teddy Prima Aniisah Eka Rahmawati Ardilla, Aufa ASHARI, FAISAL Astrini Aning Widoretno Boy Diego Lumwartono Davila Erdianita Dimas Putra Andaru Dwi Arman Prasetya Dwi Rahma Putri, Septiani Eka Prakarsa Mandyartha Eka Zuni Selviana EKO WAHYUDI Eko Wahyudi Eriyansyah Yusuf Suwandana Fetty Tri Anggraeny Firmansyah Firdaus Anhar Gusti Eka Yuliastuti Hamidah Hendrarini Hardianto, Eragradiansyah Henni Endah Wahanani Herdi Rofaldi Hidra Amnur I GEDE SUSRAMA Idhom, Mohammad Iriansah, Ogy Rachmad Khairil Amin, Mohammad Lina Nurlaili, Afina Made Hanindia Prami Swari Mafaza, Rima Muttaqina Mahanani, Anajeng Esri Edhi Maulana, Hendra Mubarokah Muhammad Eko Prasetyo Muhammad Izdihar Alwin Muhammad Izdihar Alwin Muhammad Muharrom Al Haromainy Mustika Rizki, Agung Muttaqin, Faisal Muttaqin, Faisal Nabila Sya’bani Wardana Nobrian, Ikhsan Nugroho Gultom, Wahyu Nugroho Sihananto, Andreas Nur Aini Ersanti Nurlaili, Afina Lina Pradana Ariando, Aldo Pratama Wirya Atmaja Puspaningrum, Eva Y Rahmawati, Aniisah Eka Raviy Bayu Setiaji Retno Mumpuni Rizqulloh Zain, Muhammad Dhiya'ulhaq Samdono, Arif Saputra, Wahyu Syaifullah Jauharis Shabika Aqmarina, Azzuraa Soedarto, Teguh Suci Ismiati Suprapto, Claudia Millennia Vita Via, Yisti Wicaksa Putra Pribadi, Achareeya Winata, Chycik Ayu Wirya Atmaja, Pratama Yunizar, Sri Fatmawati