Claim Missing Document
Check
Articles

Found 27 Documents
Search

SISTEM REKOMENDASI PENEMPATAN PERSONEL POLDA NUSA TENGGARA BARAT (NTB) MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) DAN PROFILE MATCHING Santoso, Heroe; Al-Mu’min, Al-Mu’min; Hammad, Rifqi; Azhar, Raisul; Husain, Husain; Rosanensi, Melati; Dharma, I Made Yadi; Suriyati, Suriyati
Journal of Information System, Informatics and Computing Vol 9 No 1 (2025): JISICOM (Journal of Information System, Informatics and Computing)
Publisher : Sekolah Tinggi Manajemen Informatika dan Komputer Jayakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52362/jisicom.v9i1.1902

Abstract

Kepolisian Negara Republik Indonesia bertujuan untuk mewujudkan keamanan dalam negeri yang meliputi terpeliharanya keamanan dan ketertiban masyarakat, tertib dan tegaknya hukum, terselenggaranya perlindungan, pengayoman, dan pelayanan kepada masyarakat, serta terbinanya ketenteraman masyarakat dengan menjunjung tinggi hak asasi manusia. Anggota Kepolisian Negara Republik Indonesia yang selanjutnya disebut anggota Polri adalah pegawai negeri pada Kepolisian Negara Republik Indonesia. Kepolisian Daerah Nusa Tenggara Barat (Polda NTB) adalah sebuah lembaga pemerintah yang bertanggung jawab dalam memberikan pelayanan kepada masyarakat. Dalam menjalankan tugas ini, kehadiran personel yang tepat dan berkualitas sangat penting untuk mendukung tujuan tersebut, serta untuk menjamin efisiensi dan efektivitas operasional kepolisian. Saat ini, instansi ini belum sepenuhnya memanfaatkan kemajuan teknologi informasi untuk mendukung kebutuhan esensial seperti penempatan personel. Proses seleksi penempatan personel ini membutuhkan tingkat ketelitian standar yang tinggi dan perhatian ekstra, dengan mempertimbangkan kriteria khusus dan serangkaian tes yang dilakukan. Karena pentingnya proses ini, jika dilakukan dengan baik, dapat menghasilkan penempatan personel yang tepat, berkualitas, dan akuntabel. Dalam sistem rekomendasi penempatan personel Polda Nusa Tenggara Barat menggunakan metode analytical hierarchy process (AHP) dan profile matching. AHP berupa model pendukung keputusan yang fleksibel dalam bentuk struktur hierarki, yang memungkinkan individu-individu atau kelompok-kelompok memunculkan gagasan masalah berupa membangun perkiraan sendiri serta melahirkan pemecahan yang diinginkan, sedangkan profile matching adalah sebuah mekanisme pengambilan keputusan dengan mengasumsikan bahwa terdapat tingkat variabel prediktor yang ideal yang harus dipenuhi oleh subyek yang diteliti. Kriteria yang digunakan dalam penelitian antara lain kinerja, kedisiplinan, rohani, psikologi, kesehatan, jasmani dan kemampuan teknologi informasi.
IMPLEMENTASI BILSTM UNTUK KELASIFIKASI SENTIMEN PADA KASUS PEMILIHAN UMUM 2024 Qososyi, Sayidina Ahmadal; Hairani, Hairani; Hammad, Rifqi
Insand Comtech : Information Science and Computer Technology Journal Vol 10, No 1 (2025): Insand Comtech
Publisher : Universitas Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53712/jic.v10i1.2623

Abstract

Kemajuan media sosial memudahkan kita untuk mengetahui peristiwa dan informasi di seluruh dunia. Twitter merupakan salah satu media sosial dengan banyak pengguna yang sering digunakan untuk mengekspresikan opini atau sentimen terhadap isu-isu terkini. Penelitian ini bertujuan untuk melakukan klasifikasi sentimen dalam bahasa Indonesia terkait opini masyarakat yang berupa positif, negatif, dan netral terhadap pemilu 2024. Metode yang digunakan adalah Bidirectional Long Short-Term Memory (BiLSTM) untuk klasifikasi sentiment. Data yang digunakan pada penelitian ini berasal dari Twitter sebanyak 3.085 data. Hasil klasifikasi sentimen dengan BiLSTM menunjukkan akurasi terbaik 83% menggunakan embedding FastText, diikuti oleh Word2Vec dan Glove dengan akurasi 82%. Analisis ini membantu memahami opini publik terhadap pemilu 2024 dan memudahkan pemantauan serta evaluasi proses demokrasi di Indonesia.
Development of an Android-Based Educational Game to Introduce Sumbawa's Art and Culture to Elementary School Students Attaqwa, M.Aswin Syarif; Hammad, Rifqi; Sujaka, Tomi Tri
Journal of Artificial Intelligence and Software Engineering Vol 5, No 2 (2025): Juni On-Progress
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i2.6937

Abstract

Technology is increasingly being used to facilitate work in various fields, including education. One of the uses of technology in education is as a learning medium. However, the use of learning media, especially technology-based media, is still very limited. This affects the learning process, where children often become easily bored due to a lack of interest in studying. Therefore, based on this issue, the researcher developed an Android-based educational game to help children learn about the art and culture of Sumbawa, specifically Satera Jontal (Sumbawa script) and traditional ceremonies of the Sumbawa region. This study uses the Multimedia Development Life Cycle (MDLC) method, which consists of six stages: concept, design, material collecting, assembly, testing, and distribution. Based on the results of media expert validation, a score of 92% was obtained; material expert validation scored 95%; and user testing produced a result of 82%. These results indicate that the developed Android-based educational game is suitable for use. Based on pretest results from users, the average score was 56.36, while the posttest results showed an average score of 74.24. These results demonstrate that the developed educational game can improve student learning outcomes
Strategi Pelestarian Aksara Sasak melalui Mobile Game Edukatif Berbasis ADDIE Anas, Andi Sofyan; Tajuddin, Muhammad; Adil, Ahmat; Hammad, Rifqi
Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK) 2025: SNESTIK V
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/p.snestik.2025.7354

Abstract

The Sasak script is an essential part of the cultural identity of the Sasak people in Lombok. However, interest among the younger generation in learning this script has been declining due to the dominance of the Indonesian language and globalization. Therefore, innovation in learning methods is necessary to ensure that the Sasak script remains preserved and appealing to students. One potential approach is gamification through educational mobile games. This study aims to develop a mobile game as a learning medium for the Sasak script using the ADDIE (Analysis, Design, Development, Implementation, and Evaluation) model. In the analysis phase, user needs and challenges in learning the Sasak script are identified. The design phase involves creating engaging gamification elements and an intuitive user interface. The development phase focuses on implementing technology to develop the mobile game. The game is then tested during the implementation phase, followed by the evaluation phase, which assesses its effectiveness in increasing students’ interest and understanding of the Sasak script, as well as evaluating the game’s content and interface. The results show that an ADDIE-based mobile game can enhance students’ motivation to learn the Sasak script. The use of gamification effectively creates a more interactive and enjoyable learning experience. Thus, this study contributes to the preservation of the Sasak script while providing an innovative solution for regional language education through digital technology.
Implementasi Kurikulum Merdeka Melalui Media Pembelajaran Berbasis Augmented Reality Matapelajaran Ilmu Pengetahuan Alam dan Sosial Hammad, Rifqi; Apriani; Muhid, Abdul
Jurnal Pemberdayaan Masyarakat Vol 10 No 1 (2025): Mei
Publisher : Direktorat Penelitian dan Pengabdian kepada Masyarakat (DPPM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21067/jpm.v10i1.10730

Abstract

SLBN 2 Mataram is a special needs school with elementary, junior high and high school education levels. Currently the problem faced by SLBN 2 Mataram is the limited learning media for children with disabilities, the learning media used is still less attractive to students, the SLBN 2 Mataram teacher has never developed Augmented Reality-based learning media, the SLBN 2 Mataram school website has not seen the content and content.  Whereas making the content and content of the school website is very important for the existence of the organization's existence especially in the education environment. The solution offered from these problems is training in making Augmented Reality-based teaching media and training in making website content and content. There are several stages of activities carried out related to the solutions offered, starting from the stages of socialization, training, application of technology, mentoring and evaluation, and program sustainability. From the results of training activities obtained that there are 95.8% of teachers who can make Augmented Reality-based learning media and there are 90% of teachers who are able to manage and content the school website.
Optimizing Tourism Recommendations with a Hybrid Model: Bridging User Preferences and Behavioral Patterns Hammad, Rifqi; Azwar, Muhammad; Syarif, M. Aswin
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 4 (2025): August 2025 (in progress)
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i4.6510

Abstract

Recommender systems play a crucial role in personalized decision-making, particularly in the tourism industry, where users seek destinations that align with their preferences. However, traditional recommendation methods often struggle to provide accurate recommendations. This study proposes a hybrid recommendation model that integrates Content-Based Filtering (CBF) and Apriori association rule mining to enhance recommendation quality. First, CBF was implemented using TF-IDF, Word2Vec, and BERT embeddings to compute the similarity between user preferences and tourism destinations. The Top-N recommended destinations from each method were then used as antecedents in Apriori to identify associative patterns and co-occurrence relationships among tourism destinations. By leveraging both semantic preference matching and association rule mining, the proposed system refines the recommendation process, ensuring not only personalized suggestions but also uncovering implicit travel patterns. The experimental results demonstrate that the hybrid model improves recommendation relevance and accuracy compared to standalone CBF methods. The accuracy of the CBF model was 53.96%, whereas that of the hybrid model was 94.31%. The integration of CBF and Apriori offers a more comprehensive and data-driven recommendation framework, which is valuable for personalized tourism applications.
Corn sales analysis using linear regression and svm methods to improve production planning Saputra, Ahmad Hakiki; Priyanto, Dadang; Hammad, Rifqi
Journal of Soft Computing Exploration Vol. 6 No. 3 (2025): September 2025
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v6i3.591

Abstract

This research aimed to analyze and predict corn sales at UD Muara Kasih to improve production planning accuracy. The study used historical corn sales data collected over a specific period, covering 42 data entries from January 2021 to December 2024. The dataset included variables such as sales date, quantity sold, selling price per ton, total sales value, weather conditions, market demand (in tons), and the number of laborers. Prior to model training, the data underwent comprehensive preprocessing involving data cleaning, feature extraction, and normalization to ensure its quality and readiness for analysis. Two predictive models were applied: Linear Regression and Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel. Simulation data for 2024 and 2025 were generated based on the monthly averages derived from the historical dataset. The results showed that the Linear Regression model produced more stable predictions with a lower Root Mean Squared Error (RMSE) of 255.84 compared to the SVM model’s RMSE of 256.42. While the SVM model showed greater responsiveness to seasonal variations, the Linear Regression model was identified as the most suitable for the given dataset. The predictive models developed in this study are expected to support UD Muara Kasih in making more accurate and informed production decisions in the future.