p-Index From 2021 - 2026
12.947
P-Index
This Author published in this journals
All Journal TEKNIK INFORMATIKA Sainteks Jurnal Pseudocode SMATIKA Jurnal Ilmiah KOMPUTASI Jurnal Informatika JURNAL MEDIA INFORMATIKA BUDIDARMA InComTech: Jurnal Telekomunikasi dan Komputer Jurnal SOLMA Prosiding Seminar Nasional Teknoka Dinamisia: Jurnal Pengabdian Kepada Masyarakat SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan Jurnal Sisfokom (Sistem Informasi dan Komputer) MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer IJID (International Journal on Informatics for Development) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Jurnal Linguistik Komputasional Jurnal ICT : Information Communication & Technology Building of Informatics, Technology and Science FIKROH: JURNAL PEMIKIRAN DAN PENDIDIKAN ISLAM Jurnal Teknologi Dan Sistem Informasi Bisnis Zonasi: Jurnal Sistem Informasi Jurnal Informatika dan Rekayasa Perangkat Lunak Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Jurnal Sistem Komputer dan Informatika (JSON) Teknosains : Jurnal Sains,Teknologi dan Informatika Infotech: Journal of Technology Information Jurnal Pengabdian kepada Masyarakat Nusantara Jurnal Teknik Informatika (JUTIF) KLIK: Kajian Ilmiah Informatika dan Komputer Sibatik Journal : Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan Jurnal Penyuuhan dan Pemberdayaan Masyarakat (JPPM) STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer SmartComp Fikroh: Jurnal Pemikiran dan Pendidikan Islam JURNAL TEKNIK INFORMATIKA DAN KOMPUTER Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Cosmic Jurnal Teknik BHAKTI JIVANA
Claim Missing Document
Check
Articles

Analisis Sentimen Masyarakat Terhadap Fenomena Childfree (Kehidupan Tanpa Anak) Pada Twitter Menggunakan Algoritma Naïve Bayes Erizal, Erizal; Hasan, Firman Noor
Journal of Information System Research (JOSH) Vol 5 No 3 (2024): April 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v5i3.5064

Abstract

Childfree is a phenomenon that occurs not only in the world but also in Indonesia. There are many negative and positive stigmas that arise regarding the phenomenon of living a life without children, especially in urban areas. The public's response to the childfree phenomenon, especially in urban areas in Indonesia, is varied, and is more influenced by various factors. In this research, we analyzed netizens' views on the childfree phenomenon using the Naïve Bayes method assisted by rapidminer tools to process text data collected via social media X. The aim of this research is to analyze and present data regarding public sentiment towards the childfree phenomenon in Indonesia. The results of the research found that 319 referred to negative sentiment, and only 181 referred to positive sentiment. The accuracy results produced by the Naïve Bayes algorithm were 95.02%. Showing that the childfree phenomenon is chosen by some netizens, especially in urban areas, because they want young people to focus on education and careers in order to make their lives more stable.
Implementation of Data Mining to Predict Student Study Period with Decision Tree Algorithm (C4.5) Putri, Kirana Alyssa; Febriawan, Dimas; Hasan, Firman Noor
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 1 (2024): MARET
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i1.1943

Abstract

Graduating on time is what every student wants to accomplish in college. Students of Prof. Dr. Hamka Muhammadiyah University are one of those who have this dream. Based on 2020 graduates data from the Tracer Study, 60% said the university had a high enough impact  on improving competence.  This data indicates that university needs to evaluate improvement of academic quality. Often, students have difficulty finding information about important factors that support achieving timely graduation. A prediction analysis is needed to provide information about the student's graduation study period. For this analysis, data mining is implemented using the classification function of the decision tree (C4.5) algorithm with RapidMiner tools. The methodology for implementing data mining follows the stages of Knowledge Discovery In Database (KDD), beginning with data collection, preprocessing, transformation, data mining, and evaluation. The research findings consist of visualization and decision tree rules that reveal GPA as the most influential factor in determining a student's study period.There is other information, namely, students graduated on time (less than equal to 4 years) amounted to 170 or 54.5% and students did not graduate on time (more than 4 years) amounted to 142 or 45.6%. Testing the performance of decision tree (C4.5) utilizing confusion matrix through RapidMiner tools, resulted in accuracy reaching 83.87%, with precision of 87.50% and recall of 91.18%. Provides evidence that the decision tree algorithm (C4.5) has optimal performance to provide valuable information about predicting student graduation in order to increase student enrollment with the right study period.
Sentiment Analysis of Society Towards the Child-free Phenomenon (Life Without Children) on Twitter Using Naïve Bayes Algorithm Nurhaliza, Siti; Febriawan, Dimas; Hasan, Firman Noor
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 1 (2024): MARET
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i1.1944

Abstract

The difference in societal perspective regarding personal well-being and understanding life choices is genuinely diverse. Lately, there is a prevalent thought where individuals believe that personal well-being can be achieved by choosing to live without children. Most of them prefer to prioritize their careers, education, or other activities that they believe can bring greater happiness and well-being to their lives. This topic has become a frequently discussed subject in almost every region of Indonesia, especially in urban areas. Not only facing negative stigma, the choice to live a life without children in Indonesia also carries positive connotations. Views on child-free in Indonesia are highly diverse, considering the many differences in social environments and each individual’s personal experiences. In this research, the Naïve Bayes algorithm is used as a sentiment classifier in the form of textual data collected through Twitter using the Rapid Miner. The data collection period spanned from May 3rd to May 10th, 2023. The research aims to analyze and present data regarding public sentiment towards the child-free phenomenon in Indonesia. The results of this research reveal the presence of 320 positive sentiments and 180 negative sentiments, with the accuracy value of the Naïve Bayes algorithm in conducting sentiment analysis on the child-free phenomenon reached 95.00%.
Utilization of the FP-Growth Algorithm on MSME Transaction Data:Recommendations for Small Gifts from The Padang Region Hasan, Firman Noor; Ariyansah, Riyan
JURNAL TEKNIK INFORMATIKA Vol. 17 No. 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i1.37966

Abstract

The existence of adequate transaction data turns out to have a similar sales transaction pattern for MSMEs, so it would be a shame if it were left like that. Moreover, this data can be used to increase efficiency in MSMEs in the culinary sector, one of which is as a recommendation for small gifts. The study uses the Association Rules technique, whereas fp-growth is used to obtain a combination of elements. The goal is to facilitate MSMEs' ability to suggest small gifts to clients. The fp-growth algorithm calculation was implemented to process 2043 data originating from transaction data in MSMEs, with the specified minimum support value being 15%, while the minimum confidence value determined was 55%. The results of the trial obtained the two best rules, namely, "If a customer buys a list of small gifts from Balado Sanjai Chips, then the customer will buy Jangek Crackers" and "If a customer buys Jangek Crackers, then the customer will buy Sanjai Balado Chips".
A PELATIHAN DASAR PENGGUNAAN AI GENERATIF UNTUK MEMBANTU PRODUKSI KONTEN UMKM Widyastuti Andriyani; Prisilia Talakua; Lisa Astria Milasari; Firman Noor Hasan
Komunikasi Vol 2 No 2 (2025): Volume 2 No 2 Agustus 2025
Publisher : Forum Komunikasi Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65055/bhaktijivana.v2i2.36

Abstract

The purpose of this community service research is to measure the effectiveness of basic training on the use of generative AI in assisting content production for MSMEs in Yogyakarta. This training was designed to address the main challenges faced by MSMEs, namely limited resources and expertise in creating consistent and high-quality digital marketing content. Through an interactive workshop method focused on hands-on practice, 25 MSME actors were educated on the concept of generative AI, prompt engineering techniques, and the utilization of AI tools. The evaluation results showed a significant increase in participant understanding, content quality, and time efficiency, where participant understanding jumped from 15% to 95%, content quality increased by 60%, and time efficiency improved by 40%. In conclusion, this training proves that the integration of generative AI is an effective strategic solution for empowering MSMEs, enhancing their competitiveness, and fostering sustainable business growth in the digital era.
ANALISIS KEPUASAN MASYARAKAT TERHADAP PERILAKU KORUPSI PEMERINTAH BERDASARKAN KOMENTAR PADA SOSIAL MEDIA MENGGUNAKAN NAIVE BAYES CLASSIFIER Irwiensyah, Faldy; Hasan, Firman Noor
Infotech: Journal of Technology Information Vol 11, No 2 (2025): NOVEMBER
Publisher : ISTEK WIDURI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37365/jti.v11i2.576

Abstract

Corrupt behaviour by government officials often occurs and becomes a problem that can disturb the public and threaten the integrity of the government system. Social media has become an important means for the public to voice their opinions and sentiments on social issues, including corrupt behaviour by government officials. This study aims to analyze the corrupt behaviour of government officials based on public sentiment on social media using the Naïve Bayes Classifier method. Data was obtained from Twitter with keywords closely related to corruption cases involving government officials, data obtained in a certain period. The Naïve Bayes Classifier method was applied to classify tweets related to corrupt behaviour by government officials to later be categorized into positive sentiment, and negative sentiment. The results of this study conclude that the TF-IDF Weighting Process, 3 words are very dominant and often appear in public sentiments, namely the words "Corruption", "Official" and the word "Tax". This shows that the public is very angry and disappointed, and this results in a very low level of trust in corrupt behaviour carried out by government officials. Especially those carried out by tax officials
Analisis Sentimen Tanggapan Pengguna Aplikasi Bale by BTN Menggunakan Metode Support Vector Machine (SVM) Setiawan, Ahmat; Hasan, Firman Noor
STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer Vol. 4 No. 4 (2025): November
Publisher : Yayasan Literasi Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55123/storage.v4i4.6469

Abstract

Dalam era digital yang kian berkembang, analisis sentimen pada komentar pengguna dijadikan alat penting untuk mengevaluasi kualitas aplikasi mobile banking. Penelitian ini bertujuan untuk mengidentifikasi sentimen pengguna pada aplikasi bale by BTN yang diluncurkan pada Februari 2025 sebagai penyempurna dari aplikasi BTN Mobile. Metode yang digunakan meliputi scraping data ulasan dari Google Play Store, preprocessing teks (case folding, normalisasi, tokenisasi, stopword removal, dan stemming), pelabelan berdasarkan kamus lexicon-based approach, serta pembangunan klasifikasi model dengan algoritma Support Vector Machine dengan TF-IDF vectorization. Dari 2.000 data awal, diperoleh 1.767 data valid yang dianalisis. Hasil menunjukkan bahwa model SVM mencapai akurasi sebesar 73,16%, dari 354 data testing dengan distribusi sentimen: positif (52,57%), dan negatif (47,43%). Model menunjukkan performa terbaik dalam mengklasifikasi sentimen Positif dengan precision 0.73, recall 0.80, dan F1-score 0,77 pada 194 data sedangkan pada sentimen negatif, model menunjukan hasil cukup baik dengan precision 0.73, recall 0.65, dan F1-score 0.69 pada 160 data.
Co-Authors Abdillah, Allif Rizki Abdul Syakir Achmad Ramadhan Achmad Sufyan Aziz Afandi, Irfan Ricky Affandi, Irfan Ricky Afikah, Prista Afnan Sabili, Dian Ainurrafik Agus Fikri Agus Fikri Ahmad Rizal Dzikrillah Ahmad Rizal Dzikrillah Ahmad Roshid Ahmad Syahril Ahmad Syahril Al Ghozi, Dhiyauddin Alfandi Safira Alim, Endy Sjaiful Allif Rizki Abdillah Allif Rizki Abdillah Ammar Rusydi Ananda Prasta Warasati Janah Ananda, Ridha Faiz Andika Saputra Andriani, Vivi Anhari, Tirta Anwar Hidayat Ari Wibowo Arief Wibowo Arien Bianingrum Rossianiz Arvin Rafialdo Aulia, Muhammad Fathan Avorizano, Arry Azhar Haikal Anwar Azhar Haikal Anwar Bagas Kembar Rezkyllah Bahrul Rozak Bahrul Rozak Dan Mugisidi Dandie Triyanto Desty Afni Dewi Mayangsari Dian Ainurrafik Afnan Sabili Dian Ainurrafik Afnan Sabili Diana Fitri Lessy Diana Fitri Lessy Dimas Febriawan Dimas Febriawan Dimas Febriawan Dion Parisda Ray Djeli Moh Yusuf Doni Gunawan Rambe E Erizal Erizal Erizal Erizal Erizal Estu Sinduningrum Estu Sinduningrum Fachri Zaini Fadli Al Gani Fadli Hardiyanto Putra Fadli, Khairul Faisal Parsakh Nursyamsi Faisal Parsakh Nursyamsyi Fajar Sidik fajar sidik Faldy Irwiensyah Faldy Irwiensyah Faldy Irwiensyah, Faldy Farhan Bias Purnama Putra Farhan Nufairi Farhan Nufairi Fathurrohman, Sewin Fauzan Setya Ananto Fauzi Kurniawan Fayakun Kun Febriandirza, Arafat Febriawan, Dimas Hafizh Dhery Al Assyam Handika, Yusuf Hanif, Isa Faqihuddin Hardyatman, Intan Diah Hazbi Santoso Hibatullah Faisal Hibatullah Faisal Hibatullah Faisal Hilmi Ammar Hilmy Zhafran Muflih I Ketut Sudaryana, I Ketut Ibnu Suhada Indra Ramadhan Indra Ramadhan Indriyanti, Prastika Intania Widyaningrum Irawati Irawati Irfan Ricky Affandi Isnan Wisnu Prastiyo Kamayani, Mia Krisna, Mohammad Dito Dwi Kurniyati Nur Lathifah Dini Rachmawati Lingga Lingga Lingga Lita Astri Pramesti Luqman Abdur Rahman Malik Luthfi Akbar Ramadhan M. Asep Rizkiawan Meliyawati MILASARI, LISA ASTRIA Mohammad Akhdaan Juliandra Muchammad Sholeh Muchammad Sholeh Muflih, Hilmy Zhafran Muhamad Saiful Arif Muhammad Abid Fajar Muhammad Ardhi Ryan Saputra Muhammad Ikhwan Muhammad Ikhwan Muhammad Rafly Al Fattah Zain Muhammad Ridwan Muhammad Rifansyah Mukti, Avis Tantra Mutiara Zahra Arifin Nisa Qonita Rizkina Nofendri, Yos Nugroho, Dendy Aprilianto Nunik Pratiwi Oktarina Heriyani Pamungkas, Dimas Panji Islami Anakku Pavita, Rachma Pranata, Ananda Bagas Prisilia Talakua Prista Afikah Purnamaningsih, Ine Rahayu Putri, Kirana Alyssa Rafli Erlangga Rahman Malik, Luqman Abdur Rahmatullah, Ahmad Faiz Ramadhita, Nindia Fitri Ramzah, Harry Reisa Inayah Rian gustini Ridwan Maulana Subekti Rika Nurhayati Riyan Ariyansah Rizki Alamsyah Rizki Kamelia Rizky Ramdhani Rosalina Rozak, Bahrul Saputra, Ramadani Sari, Jessica Windi Sari, Laila Atikah Setiawan, Ahmat Simamora, Silvia Damayanti Sinduningrum, Estu Sistani, Muhammad Ghiffar Siti Nurhaliza Sri Fitriani Sunata, Muhamad Hafidz Ardian Syahri, Alfi Tasya Rizki Salsabilla Tia Anggita Sari Transiska, Dwi Wahyu Stiyawan Wahyuningtyas, Irma Wanda Aulia Widyastuti Andriyani Windi Al Azmi Wulandari, Sania Zahra, Khofifah Humaeroh Az Zaini, Fachri Zuhri Halim Zuhri Halim, Zuhri