Agus Suryanto
Department Of Agronomy, Faculty Of Agriculture, Universitas Brawijaya

Published : 66 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Proceeding of the Electrical Engineering Computer Science and Informatics

Multispectral Imaging and Convolutional Neural Network for Photosynthetic Pigments Prediction Kestrilia Prilianti; Ivan C. Onggara; Marcelinus A.S. Adhiwibawa; Tatas H.P. Brotosudarmo; Syaiful Anam; Agus Suryanto
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 5: EECSI 2018
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (768.207 KB) | DOI: 10.11591/eecsi.v5.1675

Abstract

The evaluation of photosynthetic pigments composition is an essential task in agricultural studies. This is due to the fact that pigments composition could well represent the plant characteristics such as age and varieties. It could also describe the plant conditions, for example, nutrient deficiency, senescence, and responses under stress. Pigment role as light absorber makes it visually colorful. This colorful appearance provides benefits to the researcher on conducting a nondestructive analysis through a plant color digital image. In this research, a multispectral digital image was used to analyze three main photosynthetic pigments, i.e., chlorophyll, carotenoid, and anthocyanin in a plant leaf. Moreover, Convolutional Neural Network (CNN) model was developed to deliver a real-time analysis system. Input of the system is a plant leaf multispectral digital image, and the output is a content prediction of the pigments. It is proven that the CNN model could well recognize the relationship pattern between leaf digital image and pigments content. The best CNN architecture was found on ShallowNet model using Adaptive Moment Estimation (Adam) optimizer, batch size 30 and trained with 15 epoch. It performs satisfying prediction with MSE 0.0037 for in sample and 0.0060 for out sample prediction (actual data range -0.1 up to 2.2).
Co-Authors Adi Prawoto Aini, Nurul Ainurrasjid, Ainurrasjid Ainurrasyid, Ainurrasyid Akbar, Mohammad Fani Alislami, Tia Candra Khaula Anam, Syaiful Andriani, Putri Anggraini, Fita Arifin, Mochammad Samsul Cahyani, Agustina Rizky Chaerunnisa, Chaerunnisa Chaerunnisa, Sita Sarah Damanik, Sariah Aprianti Dewi, Suci Surya Dewi, Wening Tiara Didik Hariyono Dini Qowiyah Ula Dwi Yamika, Wiwin Sumiya Eko Widaryanto Eline, Merina Erlambang, Rere Febrianti, Annisa Fitri Ferdian, Herman Firdaus, Mohammad Nur Firokhman, Alnguda Fitriani, Riza Heddy, Suwasono Huda, Mukhammad Robitul Indrawan, Rahadyan Rizki Ismail, Moch. Taufiq Ivan C. Onggara Jatumara, Prawesty Dinnar Juprianto, Miki Karuniawan Puji Wicaksono Kestrilia Rega Prilianti Koesriharti Koesriharti Kumalasari, Septi Nuning Kurniawan, Berry Maitimu, Dyah Kartika Marcelinus A.S. Adhiwibawa Marsela, Marsela Medha Baskara Misromi, Misromi Moch. Dawam Maghfoer Mochammad Dawam Maghfoer Mudji Santosa Multazam, Mohammad Ainun Nafiah, Vivi Imroatin Nakhmiidah, Nisa Nararya, Mas Bagus Aulia Ninuk Herlina Nugraha, Hanggara Dwiyudha Nugraha, Mochammad Wildan Nugroho, Agung Nur Azizah Nurrohman, Mudhofi Oktavianto, Yoga Oscar Regazzoni Prastika, Angrenani Rindu Prayoga, Kharisma Marta Ramadhan, Apianto Rizky Ramadhana, Syahrul Regazzoni, Oscar Rinata, Mar’atus Eski Roedy Soelistyono Sa'aprita Kusumaningtyas Sellitasari, Shelvi Setyobudi, Lilik Setyono Yudo Tyasmoro Simbolon, Santri Novalina Sisca Fajriani Sitawati Sitawati Suchaida, Azziyaa Sudiarso, Sudiarso Suhatman, Yan Sunaryo, Sunaryo Tantra Septa Rahardian Tarigan, Maulana Ikhsan Tatas H.P. Brotosudarmo Tia Anggara, Dewi Shinta Tietyk Kartinaty Tinambunan, Erika Titin Sumarni Titin Sumarni Utomo, M. Dika Cahyo Utomo, Rizky Rachmadi Utomo, Yosafat Rio Wahyu Ramadhan, Reza Ardian Wahyuningsih, Inovian Wibowo, Ario Wahyu Wulandari, Angelia Norma Wulansari, Atikah Yogi Sugito Yoom, Lilis Irjayanti Zahra, Amellia Firdaus Zuanita, Reni