Claim Missing Document
Check
Articles

KlasifikasiEmosi Pada Twitter Menggunakan Bayesian Network Muhammad Surya Asriadie; Mohamad Syahrul Mubarok; Adiwijaya Adiwijaya
eProceedings of Engineering Vol 4, No 2 (2017): Agustus, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ringkasan. Bahasa digunakan tidak hanya untuk mengutarakan fakta, akan tetapi juga emosi. Emosi tersebut juga dapat terlihat mulai dari perilaku hingga tulisan yang ditulis olehnya. Analisis emosi di dalam teks sendiri dapat dilakukan pada berbagai media, salah satunya adalah Twitter. Pendeteksian emosi bisa memiliki berbagai macam pengaplikasian salah satunya adalah sebagai bahan pertimbangan keputusan politik dalam suatu pemerintahan. Pada tugas akhir ini, penulis meneliti klasifikasi emosi pada twitter menggunakan Bayesian Network. Metode tersebut digunakan karena kemampuannya dalam memodelkan ketidakpastian dan relasi antar fitur. Hasil penelitian menunjukan bahwa, metode yang digunakan untuk melatih jaringan Bayesian Network belum cukup efektif untuk menghasilkan model terbaik, dengan nilai F1-Score tertinggi adalah 53.71%. Model alternatif berbasis Bayesian Network juga dipelajari. Hasil percobaan menunjukan hasil yang lebih baik dibandingkan Multinomial Naive Bayes dengan kompleksitas inferensi yang tidak jauh berbeda. Nilai F1-Score untuk model Multinomial Naive Bayes adalah 51.49%, sedangkan model alternatif berbasis Bayesian Network adalah 52.14%.
Implementasi Mutual Information Dan Bayesian Network Untuk Klasifikasi Data Microarray Mahendra Dwifebri Purbolaksono; Adiwijaya Adiwijaya
eProceedings of Engineering Vol 4, No 2 (2017): Agustus, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract.Kanker merupakan salah satu penyebab utama kematian seseorang diseluruh dunia. Menurut data WHO, ada sekitar 14 juta kasus kanker baru di tahun 2012. Karena hal itu pengawasan sejak dini dibutuhkan guna mencegah pertumbuhan kanker. Selain itu pendeteksian secara dini juga merupakan hal yang dibutuhkan. Salah satu cara mendeteksi yaitu melalui ekspresi gen. Ekspresi gen merupakan metode ekstrasi gen menjadi data yang menjadi data bernama microarray. Data microarray memungkinkan terjadi proses pengklasifikasi secara langsung namun atribut dalam suatu record sangat besar sehingga memakan waktu komputasi yang lama. Karenanya dibutuhkan sistem yang dapat menyelesaikan masalah tersebut. Pada penelitian ini, sistem menggunakan pendekatan machine learning yaitu Bayesian Network. Sedangkan untuk seleksi fitur menggunakan Mutual information. Hal ini berguna untuk mengurangi attribute yang terlalu banyak. Untuk pengukuran menggunakan F1-score. Sistem yang dibangun mampu mengklasifikasi kanker dengan f1-score tertinggi mencapai 91.06%. Keyword: Bayesian Network, Mutual Information, Microarray.
Klasifikasi Sentimen Pada Ulasan Buku Berbahasa Inggris Menggunakan Information Gain Dan Naïve Bayes Laila Putri; Mohamad Mubarok; Adiwijaya Adiwijaya
eProceedings of Engineering Vol 4, No 3 (2017): Desember, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Semakin berkembangnya teknologi informasi, mengakibatkan pertumbuhan data mengenai ulasan buku semakin besar dan pesat. Dengan membaca review atau ulasan berdasarkan pengalaman pembaca lain, maka kita akan mengetahui kualitas dari buku tersebut. Begitu banyaknya ulasan akan mempersulit pengguna lain untuk menyimpulkan hasil dari ulasan tersebut mengandung opini positif atau negatif. Oleh karena itu, peneliti memberikan solusi dengan menggunakan klasifikasi sentimen ulasan buku. Metode yang digunakan adalah Information Gain dan Naïve Bayes. Information Gain digunakan sebagai metode pemilihan fitur yang dapat membuat akurasi penelitian menjadi meningkat dengan mengurangi fitur-fitur yang kurang. Naïve Bayes digunakan untuk mengatasi masalah ketidakpastian yang terdapat pada pengklasifikasian teks, dan Naïve Bayes mengklasifikasikan ulasan, cenderung beropini positif atau negatif berdasarkan nilai probabilitasnya. Berdasarkan skenario pengujian yang telah dilakukan, performa klasifikasi sentimen pada ulasan buku berbahasa inggris menggunakan Information Gain dan Naive Bayes dari rata-rata F1-score menggunakan 5-fold-cross validation adalah 88,28%. Kata kunci: ulasan buku, analisis sentimen, naïve bayes, information gain
Klasifikasi Dokumen Menggunakan Kombinasi Algoritma Principal Component Analysis Dan Svm Michael Sianturi; Adiwijaya Adiwijaya; Said Faraby
eProceedings of Engineering Vol 4, No 3 (2017): Desember, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Klasifikasi dokumen teks adalah masalah yang sederhana namun sangat penting karena manfaatnya cukup besar mengingat jumlah dokumen yang ada setiap hari semakin bertambah. Dalam melakukan klasifikasi dokumen, pada tugas akhir ini digunakan algoritma. Principal Component Analysis merupakan suatu teknik yang dapat digunakan untuk mengekstrasi struktur dari suatu data yang berdimensi tinggi tanpa menghilangkan informasi yang signifikan pada keseluruhan data. SVM adalah metode learning machine yang bekerja atas prinsip Structural Risk Minimization (SRM) dengan tujuan menemukan hyperplane terbaik yang memisahkan dua buah class pada input space. Hasil dari pengujian sistem menggunakan data yang direduksi oleh Principal Component Analysis (PCA) memiliki akurasi yang sedikit lebih rendah untuk dataset tertentu dibandingkan tanpa menggunakan PCA. Akurasi terbaik pada penelitian ini dihasilkan dari metode SVM dengan akurasi rata-rata 98.95%, sedangkan untuk metode SVM + PCA akurasi yang diperoleh rata-rata 96.7866%. Kata kunci: Klasifikasi Dokumen, Principal Component Analysis, Support Vector Machine.
Klasifikasi Sentimen Review Film Menggunakan Algoritma Support Vector Machine Irene Yulietha; Said Faraby; Adiwijaya Adiwijaya
eProceedings of Engineering Vol 4, No 3 (2017): Desember, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dengan kemajuan di bidang teknologi, seluruh informasi tentang semua film sudah tersedia di Internet. Jika informasi tersebut diolah dengan baik maka akan diperoleh kualitas dari informasi tersebut. Tugas Akhir ini bertujuan untuk menjelaskan klasifikasi sentimen pada dokumen review film. Satu hal yang penting dalam sebuah review atau ulasan yaitu opini yang terkandung di dalamnya. Metode yang digunakan pada penelitian ini adalah Support Vector Machine (SVM). Metode ini dipilih karena mampu mengklasifikasikan data berdimensi tinggi sesuai dengan data yang digunakan pada Tugas Akhir ini yaitu berupa teks. Pengklasifikasi Support Vector Machine adalah teknik machine learning yang populer untuk klasifikasi teks karena dapat melakukan klasifikasi dengan cara belajar dari sekumpulan contoh dokumen yang telah diklasifikasi sebelumnya dan juga mampu memberikan hasil yang baik. Dari uji skenario yang dilakukan, dapat diketahui bahwa algoritma Support Vector Machine dapat digunakan untuk kasus review film dengan nilai F1-Score sebesar 84.9%. Kata kunci : analisis sentimen, support vector machine, review film, klasifikasi
Kategorisasi Teks Pada Hadits Sahih Al-bukhari Menggunakan Random Forest Muhammad Afianto; Adiwijaya Adiwijaya; Said Faraby
eProceedings of Engineering Vol 4, No 3 (2017): Desember, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Al-Hadits merupakan kumpulan dari sabda, perbuatan, ketetapan, dan persetujuan Rasulullah Shallallahu ‘Alaihi wa Salam yang merupakan sumber hukum Islam kedua setelah Al-Qur’an. Sebagai dasar agama Islam, Muslim wajib mempelajari, menghafalkan, dan mengamalkan Al-Quran dan Al-Hadits. Satu dari imam besar sekaligus orang yang meriwayatkan Al-Hadits adalah Imam Bukhari. Beliau menghabiskan waktu selama 16 tahun dalam meriwayatkan Al-Hadits yang jumlahnya sebanyak 2602 Hadits tanpa perulangan dan lebih dari 7000 jika dengan perulangan. Kategorisasi teks otomatis merupakan sebuah kegiatan membangun perangkat lunak yang mampu mengklasifikasikan teks dokumen atau Hypertext ke dalam kategori atau kode subjek yang sudah ditentukan sebelumnya. Algoritma yang akan digunakan adalah Random Forest yang merupakan perkembangan dari Decision Tree. Dalam penelitian tugas akhir ini, penulis memutuskan untuk membuat sebuah sistem yang mampu mengkategorisasikan teks dokumen yang memuat Hadits yang diriwayatkan oleh imam Bukhari berdasarkan kategori anjuran, larangan, dan informasi. Adapun dalam metode evaluasinya, perhitungan K-Fold Cross Validation dengan F1-Score yang didapat sebesar 90%. Kata kunci : Kategorisasi Teks Dokumen, Hadits Sahih Al-Bukhari, Random Forest, K-fold cross validation, F1-score.
Implementasi Partial Least Square dan K-Nearest Neighbor - Support Vector Machines Untuk Klasifikasi Data Microarray A Rakha Ahmad Taufiq; Adiwijaya Adiwijaya; Annisa Aditsania
eProceedings of Engineering Vol 5, No 3 (2018): Desember 2018
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Kanker menjadi salah satu penyebab kematian paling banyak di dunia. Diperkirakan setiap tahun jumlahnya akan terus bertambah. Salah satu pendeteksiannya adalah menggunakan ekspresi gen. Microarray dapat mengoleksi kumpulan besar ekspresi gen dalam satu waktu, sehingga DNA microarray mempunyai karakteristik data tersendiri, yaitu mempunyai dimensi data yang sangat besar dibanding dengan jumlah datanya. Oleh karena itu, dibutuhkannya sistem untuk menyelesaikan masalah tersebut. Pada penelitian ini, dibangun sistem yang mengimplementasikan ekstraksi fitur Partial Least Square (PLS) dan metode klasifikasi K-Nearest Neighbor - Support Vector Machines (KNN-SVM). Ekstraksi fitur berguna untuk mengurangi dimensi microarray yang sangat besar dengan membentuk data baru yang merupakan representasi data asli. Performansi sistem diukur menggunakan akurasi. PLS berhasil menaikkan akurasi dari classifier KNN-SVM. Nilai akurasi tertinggi yang didapatkan oleh PLS KNN-SVM adalah sebesar 96.17% Kata kunci: k-nearest neighbor, support vector machines, partial least square, microarray. Abstract Cancer is one of the most common causes of death in the world. Estimated every year the number will continue to grow. One of the detection is using gene expression. Microarray can collect a large number of gene expression at the same time, DNA Microarray have their own data characteristic, which have a very large data dimension compared with the amount of data. Therefore, a system needed to solve the problem. In this research, we built a system that implements Partial Least Square (PLS) feature extraction and KNearest Neighbor - Support Vector Machines (KNN-SVM) for the classification. Feature extraction is useful for reducing very large dimension of microarray by forming new data. System performance is measured using accuracy. PLS managed to increase the accuracy of the KNN-SVM classifier. The highest accuracy obtained by PLS KNN-SVM is 96.17%. Keywords: k-nearest neighbor, support vector machines, partial least square, microarray
Klasifikasi Polycystic Ovary Syndrome Berdasarkan Citra Ultrasonografi Menggunakan Principal Component Analysis Dan NaÏve Bayes Untuk Membantu Mendeteksi Kesuburan Wanita Nanda Prayuga; Adiwijaya Adiwijaya; Mohamad Mubarok
eProceedings of Engineering Vol 4, No 3 (2017): Desember, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Polycystic Ovary Syndrome (PCOS) adalah kelainan sindrom yang diderita wanita di sistem reproduksinya, seseorang dikatakan menderita Polycystic Ovary Syndrome (PCOS) jika ada lebih dari 12 follicle berukuran 2-9 mm atau bertambah besarnya volume follicle di ovarium hingga lebih dari 10 cm3[3]. Saat ini untuk mendeteksi Polycystic Ovary Syndrome (PCOS) dokter harus melakukan scan USG, dan secara manual menghitung jumlah follicle yang ditandai dengan area hitam di gambar. Pada penelitian sebelumnya [1, 3, 5] hanya berfokus pada peningkatan kualitas citra dan juga pendeteksian ukuran dan jumlah follicle untuk mempermudah tenaga medis melihat follicle dan menentukan diagnosis pasien. Sehingga saat ini dokter membutuhkan suatu sistem yang dapat membantunya dalam mendiagnosis Polycystic Ovary Syndrome (PCOS) secara otomatis berdasarkan citra USG untuk pendeteksian kesuburan wanita. Pada tugas akhir ini dibangun sebuah sistem klasifikasi dengan menggunakan kombinasi metode Principal Component Analysis (PCA) yang berfungsi sebagai dimensi reduksi dan Naïve Bayes yang merupakan salah satu turunan dari Bayesian Network sebagai classifiernya. Dari hasil pengujian menggunakan metode k-fold cross validation dengan k=8 dan pengujian dilakukan sebanyak 50x pengujian, dapat dilihat sistem yang dibangun dengan menggunakan metode Principal Component Analysis (PCA) dan Naïve Bayes, memiliki performansi rata-rata F1 Score tertinggi sebesar 84.76%, dengan parameter uji jumlah distribusi data ditiap kelas pada data training masing-masing 40 gambar, dan jumlah principal component sebanyak 53 serta data telah dinormalisasi. Kata Kunci: Polycystic Ovary Syndrome, ovarium, citra USG, follicle, Naïve Bayes, Principal Component Analysis, Cross Validation, Imbalanced Data, Normalisasi.
Analisis Churn Prediction Pada Data Pelanggan Pt. Telekomunikasi Menggunakan Underbagging Dan Logistic Regression Tesha Tasmalaila Hanif; Adiwijaya Adiwijaya; Said Al-Faraby
eProceedings of Engineering Vol 4, No 2 (2017): Agustus, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perkembangan teknologi sekarang ini semakin pesat. Kebutuhan akan informasi dan komunikasi bertambah. Persaingan untuk mendapatkan pendapatan antar perusahaan telekomunikasi menimbulkan adanya Churn. Churn adalah pindahnya pelanggan dari satu provider ke provider lainnya. Perusahaan lebih memilih untuk mempertahankan customer, karena dibutuhkan biaya yang lebih sedikit daripada menambah customer yang baru. Namun dalam permasalahan ini churn memiliki data yang tidak seimbang dan ekstrim dibanding dengan non-churn, sehingga perlu adanya penanganan pada distribusi kelas mayoritas (non-churn) dan minoritas (churn). Pada metode pendekatan dengan data mining, data yang tidak seimbang akan mengakibatkan proses klasifikasi yang cenderung keliru pada kelas minoritas (churn). Oleh karena itu, diperlukan penanganan kelas tidak seimbang dengan teknik sampling. Metode yang digunakan pada penelitian Tugas Akhir ini adalah metode Underbagging untuk menangani imbalance data yang dikombinasikan dengan metode klasifikasi menggunakan Logistic Regression (LR). Pengujian dilakukan dengan menggunakan dataset pelanggan WITEL PT. Telekomunikasi Regional 7 dengan 53 atribut. Jumlah data churn 7.513 record dan data non-churn 192.848 record. Penelitian ini menghasilkan nilai performansi akurasi tertinggi sebesar 85,531% dan meningkatkan nilai f1-measure lebih dari 20% terhadap hasil klasifikasi tanpa penanganan imbalance data. Kata Kunci: klasifikasi, data mining, churn prediction, logistic regression, imbalance data, underbagging.
Klasifikasi Sentimen Review Produk Otomotif Menggunakan Back Propagation Neural Network Fuad Ash Shiddiq; Said Al Faraby; Adiwijaya Adiwijaya
eProceedings of Engineering Vol 5, No 3 (2018): Desember 2018
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak- Perkembangan teknologi sekarang menuntut untuk dapat mengikuti perubahan jaman. Salah satunya dalam transaksi jual-beli yang dilakukan secara online. Sebuah toko online dapat menjual berbagai jenis barang misalnya barang elektronik, mainan, bahkan barang otomotif. Dengan adanya transaksi secara digital banyak pembeli yang ingin mengetahui bagaimana ulasan atau review tentang barang yang dijual di toko online dari pembeli yang sebelumnya telah membeli barang tersebut. Banyaknya review yang diberikan oleh konsumen menimbulkan data review untuk suatu produk di toko online menjadi sangat besar. Untuk melakukan klasifikasi data yang besar tersebut diperlukan sistem yang terotomatisasi. Dalam penelitian ini, system yang dibangun menggunakan metode Back-propagation Neural Network untuk melakukan klasifikasi data review. Hasil yang didapatkan dengan akurasi paling tinggi adalah dengan jumlah hidden layer : 1000, epoch:400, dan learning rate : 0.2 dengan akurasi sebesar 60%. Untuk pengujian tanpa menggunakan proses stopword removal didapatkan dengan akurasi paling tinggi dengan jumlah hidden layer : 1000, epoch:400, dan learning rate : 0.2 dengan akurasi sebesar 56.7%. Hal ini dikarenakan proses stopword removal dapat mengurangi noise dalam sebuah data dan mempercepat proses klasifikasi. Kata kunci : review, klasifikasi, back-propagation, stopword removal
Co-Authors A Rakha Ahmad Taufiq Abu Bakar, Muhammad Yuslan Ade Iriani Sapitri Ade Sumiahadi, Ade Adhitia Wiraguna Adhitia Wiraguna Aditya Arya Mahesa Adnan Imam Hidayat Adwin Rahmanto Afrian Hanafi Al Faraby, Said Al Mira Khonsa Izzaty Alfian Akbar Gozali Alvi Syah Amalya Citra Pradana Amir Andi Ahmad Irfa ANDI FUTRI HAFSAH MUNZIR Andina Kusumaningrum Andri Saputra Andrian Fakhri Andriyan B Suksmono Anggitha Yohana Clara Aniq Atiqi Aniq Atiqi Rohmawati Anisa Salama Annas Wahyu Ramadhan Annisa Adistania Annisa Aditsania Antika Putri Permata Wardani Aras Teguh Prakasa Astrid Frillya Septiany Astrima Manik Aziz, Muhammad Maulidan Azmi Hafizha Rahman Zainal Arifin Bambang Riyanto T. Bayu Julianto Bayu Munajat Bayu Munajat Bayu Rahmat Setiaji Bernadus Seno Aji Bernadus Seno Aji Bintang Peryoga Bisma Pradana Brama Hendra Mahendra Chiara Janetra Cakravania Clarisa Hasya Yutika D. R. Suryandari Dana Sulistiyo Kusumo Danang Triantoro Danang Triantoro Murdiansyah Daniel Tanta Christopher Sirait Dany Dwi Prayoga Dany Dwi Prayoga Della Alfarydy Akbar Deni Saepudin Denny Alriza Pratama Desi Sitompul Dewangga, Dhiya Ulhaq Dian Chusnul Hidayati Didi Rosiyadi Didit Adytia Dinda Karlia Destiani Dody Qori Utama Dody Qory Utama Dwi Yanita Apriliyana Dwi Yanita Apriliyana Dwifebri, Mahendra Eko Darwiyanto Eliza Jasin Elza Oktaviana Elza Oktaviana Endro Ariyanto Ergon Rizky Perdana Purba F. A. Yulianto Fachri Pane, Syafrial Fahmi Salman Nurfikri Faris Alfa Mauludy Faris Alfa Mauludy Farudi Erwanda Farudi Erwanda Fathur Rohman Fathurrohman Elkusnandi Fhira Nhita Fikri Rozan Imadudin Firda A. Ma’ruf Firdausi Nuzula Zamzami Firly Juanita Surahman Fuad Ash Shiddiq Gde Agung Brahmana Suryanegara Ghozy Ghulamul Afif Gia Septiana Gia Septiana Gia Septiana Gilang Rachman Perdana Gilang Rachman Perdana Gilang Titah Ramadhani Grace Tika Guntoro Guntoro Guntoro Guntoro Guntoro Guntoro Hadyan Arif Hafidudin . Hafizh Fauzan Hafizh Fauzan Hendro Prasetyo Henri Tantyoko Honakan Honakan I Kadek Haddy W. I Made Riartha Prawira I.G.N.P.Vasu Geramona Ilham Kurnia Syuriadi Ilham Yunirakhman Imadudin, Fikri Rozan Imam Prayoga Indriani Indriani Irene Yulietha Irma Irma Irma Palupi Irwinda Famesa Iyon Priyono Jendral Muhamad Yusuf Zia Ul Haq Jenepte Wisudawati Simanullang K, Kasnaeny Kamal Hasan Mahmud Kemas Muslim Lhaksmana Kemas Rahmat Saleh Raharja Kemas Rahmat Saleh Wiharja Kurnia C Widiastuti Kurniawan W. Handito Laila Putri Lalu Gias Irham Lisa Marianah Lisa Marianah Luke Manuel Daely Mahendra Dwifebri P Mahendra Dwifebri Purbolaksono Mahmud Dwi Sulistiyo Melanida Tagari Melanida Tagari Michael Sianturi Milah Sarmilah Moc. Arif Bijaksana Mochamad Agusta Naofal Hakim Mochammad Naufal Rizaldi Mohamad Irwan Afandi Mohamad Mubarok Mohamad Syahrul Mubarok Mohamad Syahrul Mubarok Mohammad Syahrul Mubarok Monica Triyani Muhammad Afianto Muhammad Enzi Muzakki Muhammad Fauzan Muhammad Feridiansyah Muhammad Ghufran Muhammad Irvan Tantowi Muhammad Kenzi Muhammad Mubarok Muhammad Mujaddid Muhammad Naufal Mukhbit Amrullah Muhammad Nurjaman Muhammad Shiddiq Azis Muhammad Shiddiq Azis Muhammad Surya Asriadie Muhammad Syahrul Mubarok Muhammad Yuslan Abu Bakar Nanda Prayuga Nida Mujahidah Azzahra Nida Mujahidah Azzahra Niken Dwi Wahyu Cahyani Novelty Octaviani Faomasi Daeli Novia Russelia Wassi Nuklianggraita, Tita Nurul Nur Ghaniaviyanto Ramadhan Oscar Ramadhan Pinem, Joshua Pratama Dwi Nugraha Preddy Desmon Purbalaksono, Mahendra Dwifebri Putri, Dinda Rahma Putri, Dita Julaika Raihana Salsabila Darma Wijaya Rendi Kustiawan Reynaldi Ananda Pane Riche Julianti Wibowo Riko Bintang Purnomoputra Riska Chairunisa Rizki Syafaat Amardita Rizky Pujianto Rizma Nurviarelda Roberd Saragih Rosyadi, Ramadhana Said Faraby Satria Mandala Sekar Kinasih Semeidi Husrin Sheila Annisa Shidqi Aqil Naufal Shuni’atul Ma’wa Sigit Bagus Setiawan St.Sukmawati S. Sugeng Hadi Wirasna Suriyanti Suriyanti Syafrial Fachri Pane, Syafrial Fachri Syahrizal Rizkiana Rusamsi Syam, Mukhlisah Syifa Khairunnisa Talitha Kayla Amory Tati LR Mengko Tesha Tasmalaila Hanif Timami Hertza Putrisanni Tita Nurul Nuklianggraita Triyani, Monica Try Moloharto Untari Novia Wisesty Untari Wisesty Untari. N. Wisesty Untary Novia Wisesty Vina Mutiara Purnama Warih Maharani Widi Astuti Widi Astuti Widi Astuti Winda Christina Widyaningtyas Wisnu Adhi Pradana Yana Meinitra Wati Yoga Widi Pamungkas Yuliant Sibaroni Zahra Putri Agusta Zakia Firdha Razak Zulfikar Fauzi