Claim Missing Document
Check
Articles

Classification of Personality based on Beauty Product Reviews Using the TF-IDF and Naïve Bayes (Case Study : Female Daily) Novia Russelia Wassi; Adiwijaya Adiwijaya; Mahendra Dwifebri Purbolaksono
Journal of Data Science and Its Applications Vol 3 No 2 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.61

Abstract

A person's personality is an important parameter to determine the character of each person and also as an assessment in various ways. In this day and age personality can not only be known from psychological tests, but also can be known in various ways. One way is through reviews presented in electronic media. In this study, a person's personality was classified into three "Big Five" personality groups, namely: Openness, Conscientiousness, and Extraversion using the Naïve Bayes method and TF-IDF as Feature Extraction. The results of the classification that have been done get 81% accuracy with preproccessing scenarios using Stemming and Stopword, TF-IDF unigram, and BernoulliNB classifier type.
Comparative Analysis of Support Vector Machine-Recursive Feature Elimination and Chi-Square on Microarray Classification for Cancer Detection with Naïve Bayes Talitha Kayla Amory; Adiwijaya Adiwijaya; Widi Astuti
Journal of Data Science and Its Applications Vol 3 No 2 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.62

Abstract

Cancer is a world-famous deadly disease. According to the World Health Organization (WHO), cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. One well-known technique for cancer detection is the DNA microarray technique. DNA microarray technology provides an opportunity for researchers to analyze thousands of gene expression profiles at the same time to determine whether a person has cancer or not. However, one of the problems in DNA microarray data is the large number of features that require feature selection. In overcoming these problems, this study will use the feature selection Support Vector Machine-Recursive Feature Elimination (SVM-RFE) and Chi-Square and use the Naïve Bayes classification method. The accuracy results from using feature selection with those that are not will be compared. The accuracy between using the two feature selection methods will also be compared to find which feature selection method is better when combined with the Naïve Bayes classification method. To get an overall picture of the performance comparison, this study also considers precision, recall, and F1-score. The best accuracy results obtained were 100% lung cancer data with SVM-RFE and Chi-Square, 99.6% ovarian cancer with SVM-RFE, 93.7% breast cancer with SVM-RFE, and 90% colon cancer with SVM- RFE.
Multi Label Topic Classification for Hadith Bukhari in Indonesian Translation using Random Forest Adhitia Wiraguna; said al faraby; Adiwijaya Adiwijaya
Journal of Data Science and Its Applications Vol 4 No 1 (2021): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2021.4.70

Abstract

Hadith is a mandatory thing to be studied and practiced by Muslims. There are many types of teachingsthat humans can take by studying the hadith. To assist Muslims in studying the hadith, a multi labelclassification system is needed to categorize Sahih Bukhari Hadi in Indonesian translation based on threetopics, namely prohibition, advice and information. In building a text classification system, there are variousclassification methods that can be used, in this study using Random Forest (RF). The simplicity of the RFalgorithm and good ability to deal with high dimensional data, make RF a suitable method of textclassification. But, there is not widely known RF capability for the multi label classification. This study usesthe Problem Transformation approach method, namely Binary Relevance (BR) and Label Powerset (LP)to adapt RF in building a multi label classification system. The results showed that the best hamming lossperformance obtained from a system that used BR and does not use stemming which is equal to 0,0663.These results indicate that the BR method is better than the LP method in adapting the RF algorithm toperform multi label classification of hadith data. This is happened because the BR method produces aclassification model of the number of labels in the hadith data and on the other hand, the transformation ofdata from the use of LP makes the data are imbalanced.
Segmentasi Citra Kanker Serviks Menggunakan Markov Random Field dan Algoritma K-Means Raihana Salsabila Darma Wijaya; Adiwijaya; Andriyan B Suksmono; Tati LR Mengko
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 1 (2021): Februari 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (451.838 KB) | DOI: 10.29207/resti.v5i1.2816

Abstract

Cervical cancer is a dangerous disease caused by malignant tumors that grow on the cervix and has globally attacked many women. Pap smear test is one of the early prevention efforts for cervical cancer. Medical personnel often have difficulty identifying images of cervical cancer cells. Several studies have used the K-Means clustering method to identify cervical cancer cell images from Herlev dataset. This study uses the Herlev dataset with the K-Means clustering algorithm and also used the Markov Random Field parameter as a feature for the process of identifying cervical cancer cell images. This study compared the results of the proposed method with some differences in the preprocessing process. The experimental results show an accuracy of 74,51% for RGB channels without low pass filter. Accuracy of 75,11% is obtained from the segmentation process using RGB channels with low pass filter. A further increase in accuracy was obtained by 75,76% when the segmentation process used the grayscale channel with low pass Filter. Based on the segmentation experiment with the highest segmentation accuracy results, the classification process using K-Nearest Neighbor (KNN) gives an accuracy of 89,29%.
Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi Gde Agung Brahmana Suryanegara; Adiwijaya; Mahendra Dwifebri Purbolaksono
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 1 (2021): Februari 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (558.879 KB) | DOI: 10.29207/resti.v5i1.2880

Abstract

Diabetes is a disease caused by high blood sugar in the body or beyond normal limits. Diabetics in Indonesia have experienced a significant increase, Basic Health Research states that diabetics in Indonesia were 6.9% to 8.5% increased from 2013 to 2018 with an estimated number of sufferers more than 16 million people. Therefore, it is necessary to have a technology that can detect diabetes with good performance, accurate level of analysis, so that diabetes can be treated early to reduce the number of sufferers, disabilities, and deaths. The different scale values for each attribute in Gula Karya Medika’s data can complicate the classification process, for this reason the researcher uses two data normalization methods, namely min-max normalization, z-score normalization, and a method without data normalization with Random Forest (RF) as a classification method. Random Forest (RF) as a classification method has been tested in several previous studies. Moreover, this method is able to produce good performance with high accuracy. Based on the research results, the best accuracy is model 1 (Min-max normalization-RF) of 95.45%, followed by model 2 (Z-score normalization-RF) of 95%, and model 3 (without data normalization-RF) of 92%. From these results, it can be concluded that model 1 (Min-max normalization-RF) is better than the other two data normalization models and is able to increase the performance of classification Random Forest by 95.45%.
Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes Mahendra Dwifebri Purbolaksono; Muhammad Irvan Tantowi; Adnan Imam Hidayat; Adiwijaya Adiwijaya
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 2 (2021): April 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (311.597 KB) | DOI: 10.29207/resti.v5i2.3008

Abstract

Diabetes (diabetes) was a metabolic disorder caused by high levels of sugar in the blood caused by disorders of the pancreas and insulin. According to data from the Ministry of Health of the Republic of Indonesia, Diabetes was the third-largest cause of death in Indonesia with a percentage of 6.7%. The high rate of death from diabetes encouraged this study, with the aim of early detection. This research used a Machine Learning approach to classify the data. In this paper, a comparison of Support Vector Machine (SVM) and Modified Balanced Random Forest (MBRF) was discussed for classifying diabetes patient data. Both methods were chosen because it was proven in previous studies to get high accuracy, so that the two methods are compared to find the best classification model. Several preprocessing methods were used to prepare the data for the classification process. The entire combination of preprocessing steps will be carried out on the two classification methods to produce the same dataset. The evaluation was carried out using the Confusion Matrix method. Based on the experimental results in the process of testing the system being built, the maximum performance results were 87.94% using SVM and 97.8% using MBRF.
Cancer Detection based on Microarray Data Classification Using FLNN and Hybrid Feature Selection Ghozy Ghulamul Afif; Adiwijaya; Widi Astuti
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 4 (2021): Agustus 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (484.221 KB) | DOI: 10.29207/resti.v5i4.3352

Abstract

Cancer is one of the second deadliest diseases in the world after heart disease. Citing from the WHO's report on cancer, in 2018 there were around 18.1 million cases of cancer in the world with a total of 9.6 million deaths. Now that bioinformatics technology is growing and based on WHO’s report on cancer, an early detection is needed where bioinformatics technology can be used to diagnose cancer and to help to reduce the number of deaths from cancer by immediately treating the person. Microarray DNA data as one of the bioinformatics technology is becoming popular for use in the analysis and diagnosis of cancer in the medical world. Microarray DNA data has a very large number of genes, so a dimensional reduction method is needed to reduce the use of features for the classification process by selecting the most influential features. After the most influential features are selected, these features are going to be used for the classification and predict whether a person has cancer or not. In this research, hybridization is carried out by combining Information Gain as a filtering method and Genetic Algorithm as a wrapping method to reduce dimensions, and lastly FLNN as a classification method. The test results get colon cancer data to get the highest accuracy value of 90.26%, breast cancer by 85.63%, lung cancer and ovarian cancer by 100%, and prostate cancer by 94.10%.
Klasifikasi Gambar Gigitan Ular Menggunakan Regionprops dan Algoritma Decision Tree Yoga Widi Pamungkas; Adiwijaya Adiwijaya; Dody Qori Utama
Jurnal Sistem Komputer dan Informatika (JSON) Vol 1, No 2 (2020): Januari 2020
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.081 KB) | DOI: 10.30865/json.v1i2.1789

Abstract

Indonesia has a high biodiversity of snakes. Snake species that exist throughout Indonesia, consisting of venomous and non-venomous snakes. One of the dangers that can be posed by snakes is the bite of several types of deadly snakes. Snake bite cases recorded in Indonesia are quite high with not a few fatalities. Most of the deaths caused by snakebite occur due to errors in the handling procedure for the bite wound. This problem can be overcome one of them if we know how to classify snake bite wounds, whether venomous or non-venomous. In this study, a classification system for snake bite wound image was built using Regionprops feature extraction and Decision Tree algorithm. Snake bite images are classified as either venomous or non-venomous without knowing the kind of the snake. In Regionprops several features are used to help the process of feature extraction, including the number of centroids, area, distance, and eccentricity. Evaluation of the model that was built was found that the parameters of the number of centroids and the distance between centroids had the most significant influence in helping the classification of images of snakebite wounds with an accuracy of 97.14%, precision 92.85%, recall 91.42%, and F1 score 92.06%.
IMPLEMENTASI ALIGNMENT POINT PATTERN PADA SISTEM PENGENALAN SIDIK JARI MENGGUNAKAN TEMPLATE MATCHING Try Moloharto; Said Al Faraby; Kemas Muslim Lhaksmana; Adiwijaya Adiwijaya; Muhammad Yuslan Abu Bakar
JURNAL TEKNOLOGIA Vol 1 No 2 (2019): Teknologia
Publisher : Aliansi Perguruan Tinggi Badan Usaha Milik Negara (APERTI BUMN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (886.448 KB)

Abstract

Fingerprints is one of biometric identification system. This is because fingerprints have unique and different pattern in every human, so identification using fingerprints can no longer be doubted. But, manual fingerprint recognition by human hard to apply because of the complex pattern on it. Therefore, an accurate fingerprint matching system is needed. There are 3 steps needed for fingerprint recognition system, namely image enhancement, feature extraction, and matching. In this study, crossing number method is used as a minutiae extraction process and template matching is used for matching. We also add alignment point pattern process added, which are ridge translation and rotation to increase system performance. The system provide a performance of 18,54% with a matching process without alignment point pattern, and give performance of 67,40% by adding alignment point pattern process.
KLASIFIKASI GIGITAN ULAR MENGGUNAKAN LOCAL BINARY PATTERN DAN NAÏVE BAYES Fathur Rohman; Adiwijaya Adiwijaya; Dody Qori Utama
JURNAL TEKNOLOGIA Vol 2 No 1 (2019): Jurnal Teknologia
Publisher : Aliansi Perguruan Tinggi Badan Usaha Milik Negara (APERTI BUMN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5494.817 KB)

Abstract

Cases of poisonous snake bites around the world are estimated to occur around 421,000 cases and 20,000 of them die every year. Identifying snake bite marks on victims will greatly help the medical team in handling victims of snake bites and will avoid fatal errors such as the death of the victim. This research will try to create a system that can classify snake bites images. The system has been built using the extraction method Local Binary Pattern (LBP) and Naive Bayes. Parameter r is a radius, while paramter P is the number of neighbor . The best result of this system has accuracy 83.33%, precision 1.00, recall 0.75, and F1 Score 0.86,parameter that used are r = 1 with P = 8 and r = 3 with P = 16. The dataset used has 20 data, the data divided into 14 training data and 6 testing data.
Co-Authors A Rakha Ahmad Taufiq Abu Bakar, Muhammad Yuslan Ade Iriani Sapitri Ade Sumiahadi, Ade Adhitia Wiraguna Adhitia Wiraguna Aditya Arya Mahesa Adnan Imam Hidayat Adwin Rahmanto Afrian Hanafi Al Faraby, Said Al Mira Khonsa Izzaty Alfian Akbar Gozali Alvi Syah Amalya Citra Pradana Amir Andi Ahmad Irfa ANDI FUTRI HAFSAH MUNZIR Andina Kusumaningrum Andri Saputra Andrian Fakhri Andriyan B Suksmono Anggitha Yohana Clara Aniq Atiqi Aniq Atiqi Rohmawati Anisa Salama Annas Wahyu Ramadhan Annisa Adistania Annisa Aditsania Antika Putri Permata Wardani Aras Teguh Prakasa Astrid Frillya Septiany Astrima Manik Aziz, Muhammad Maulidan Azmi Hafizha Rahman Zainal Arifin Bambang Riyanto T. Bayu Julianto Bayu Munajat Bayu Munajat Bayu Rahmat Setiaji Bernadus Seno Aji Bernadus Seno Aji Bintang Peryoga Bisma Pradana Brama Hendra Mahendra Chiara Janetra Cakravania Clarisa Hasya Yutika D. R. Suryandari Dana Sulistiyo Kusumo Danang Triantoro Danang Triantoro Murdiansyah Daniel Tanta Christopher Sirait Dany Dwi Prayoga Dany Dwi Prayoga Della Alfarydy Akbar Deni Saepudin Denny Alriza Pratama Desi Sitompul Dewangga, Dhiya Ulhaq Dian Chusnul Hidayati Didi Rosiyadi Didit Adytia Dinda Karlia Destiani Dody Qori Utama Dody Qory Utama Dwi Yanita Apriliyana Dwi Yanita Apriliyana Dwifebri, Mahendra Eko Darwiyanto Eliza Jasin Elza Oktaviana Elza Oktaviana Endro Ariyanto Ergon Rizky Perdana Purba F. A. Yulianto Fachri Pane, Syafrial Fahmi Salman Nurfikri Faris Alfa Mauludy Faris Alfa Mauludy Farudi Erwanda Farudi Erwanda Fathur Rohman Fathurrohman Elkusnandi Fhira Nhita Fikri Rozan Imadudin Firda A. Ma’ruf Firdausi Nuzula Zamzami Firly Juanita Surahman Fuad Ash Shiddiq Gde Agung Brahmana Suryanegara Ghozy Ghulamul Afif Gia Septiana Gia Septiana Gia Septiana Gilang Rachman Perdana Gilang Rachman Perdana Gilang Titah Ramadhani Grace Tika Guntoro Guntoro Guntoro Guntoro Guntoro Guntoro Hadyan Arif Hafidudin . Hafizh Fauzan Hafizh Fauzan Hendro Prasetyo Henri Tantyoko Honakan Honakan I Kadek Haddy W. I Made Riartha Prawira I.G.N.P.Vasu Geramona Ilham Kurnia Syuriadi Ilham Yunirakhman Imadudin, Fikri Rozan Imam Prayoga Indriani Indriani Irene Yulietha Irma Irma Irma Palupi Irwinda Famesa Iyon Priyono Jendral Muhamad Yusuf Zia Ul Haq Jenepte Wisudawati Simanullang K, Kasnaeny Kamal Hasan Mahmud Kemas Muslim Lhaksmana Kemas Rahmat Saleh Raharja Kemas Rahmat Saleh Wiharja Kurnia C Widiastuti Kurniawan W. Handito Laila Putri Lalu Gias Irham Lisa Marianah Lisa Marianah Luke Manuel Daely Mahendra Dwifebri P Mahendra Dwifebri Purbolaksono Mahmud Dwi Sulistiyo Melanida Tagari Melanida Tagari Michael Sianturi Milah Sarmilah Moc. Arif Bijaksana Mochamad Agusta Naofal Hakim Mochammad Naufal Rizaldi Mohamad Irwan Afandi Mohamad Mubarok Mohamad Syahrul Mubarok Mohamad Syahrul Mubarok Mohammad Syahrul Mubarok Monica Triyani Muhammad Afianto Muhammad Enzi Muzakki Muhammad Fauzan Muhammad Feridiansyah Muhammad Ghufran Muhammad Irvan Tantowi Muhammad Kenzi Muhammad Mubarok Muhammad Mujaddid Muhammad Naufal Mukhbit Amrullah Muhammad Nurjaman Muhammad Shiddiq Azis Muhammad Shiddiq Azis Muhammad Surya Asriadie Muhammad Syahrul Mubarok Muhammad Yuslan Abu Bakar Nanda Prayuga Nida Mujahidah Azzahra Nida Mujahidah Azzahra Niken Dwi Wahyu Cahyani Novelty Octaviani Faomasi Daeli Novia Russelia Wassi Nuklianggraita, Tita Nurul Nur Ghaniaviyanto Ramadhan Oscar Ramadhan Pinem, Joshua Pratama Dwi Nugraha Preddy Desmon Purbalaksono, Mahendra Dwifebri Putri, Dinda Rahma Putri, Dita Julaika Raihana Salsabila Darma Wijaya Rendi Kustiawan Reynaldi Ananda Pane Riche Julianti Wibowo Riko Bintang Purnomoputra Riska Chairunisa Rizki Syafaat Amardita Rizky Pujianto Rizma Nurviarelda Roberd Saragih Rosyadi, Ramadhana Said Faraby Satria Mandala Sekar Kinasih Semeidi Husrin Sheila Annisa Shidqi Aqil Naufal Shuni’atul Ma’wa Sigit Bagus Setiawan St.Sukmawati S. Sugeng Hadi Wirasna Suriyanti Suriyanti Syafrial Fachri Pane, Syafrial Fachri Syahrizal Rizkiana Rusamsi Syam, Mukhlisah Syifa Khairunnisa Talitha Kayla Amory Tati LR Mengko Tesha Tasmalaila Hanif Timami Hertza Putrisanni Tita Nurul Nuklianggraita Triyani, Monica Try Moloharto Untari Novia Wisesty Untari Wisesty Untari. N. Wisesty Untary Novia Wisesty Vina Mutiara Purnama Warih Maharani Widi Astuti Widi Astuti Widi Astuti Winda Christina Widyaningtyas Wisnu Adhi Pradana Yana Meinitra Wati Yoga Widi Pamungkas Yuliant Sibaroni Zahra Putri Agusta Zakia Firdha Razak Zulfikar Fauzi