Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Computer Science Research

Analisis Perbandingan Metode DBSCAN dan Meanshift dalam Klasterisasi Data Gempa Bumi di Indonesia MHD Ade Setiawan; Fitri Insani; Yelfi Vitriani; Yusra
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.605

Abstract

Indonesia is one of the countries with a high vulnerability to earthquakes due to its location at the convergence of three major tectonic plates: the Indo-Australian, Eurasian, and Pacific plates. As a result of this interaction, seismic activity is highly frequent across various regions. Understanding the distribution patterns of earthquakes is essential for disaster risk mitigation. One approach used to analyze these patterns is clustering, particularly using the DBSCAN  and Meanshift algorithms, which can group spatial data without predefining the number of clusters. This study aims to compare the effectiveness of both algorithms in clustering earthquake data based on spatial parameters, namely latitude and longitude. Evaluation was conducted using cluster visualization and the Silhouette Score as the clustering validity metric. The results show that DBSCAN  produces more optimal clustering with a Silhouette Score of 0.930028, higher than Meanshift's score of 0.90103. DBSCAN  is also capable of detecting relevant outliers in earthquake analysis, while Meanshift generates more clusters but with less separation. Using spatial parameters such as latitude and longitude, DBSCAN  is considered more effective in identifying the spatial distribution patterns of seismic activity in Indonesia based on earthquake data. This research supports the development of decision support systems for earthquake disaster mitigation and serves as a reference for selecting appropriate clustering methods for spatial data analysis.
Analisis Sentimen Ulasan Aplikasi Indodax Pada Google Play Store Dengan Algoritma Random Forest Muhammad Iqbal Maulana; Yusra; Muhammad Fikry; Surya Agustian; Siti Ramadhani
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.626

Abstract

Crypto assets have become a global phenomenon with a significant increase in the number of investors in Indonesia. Indodax, as the largest crypto asset trading platform in Indonesia, has contributed to the growth of this ecosystem and received many user reviews through the Google Play Store. With more than 5 million downloads and 100 thousand reviews, sentiment analysis is an important tool to understand user perceptions of Indodax services. The results of manual labeling show that the majority of reviews are positive (3989 reviews), while neutral and negative sentiments are 477 and 534 reviews respectively. From the research and testing that has been carried out using the Random Forest method and optimizing with Hyperparameter Tuning GridSearchCV on 4 test scenarios. The best results were obtained in Scenario 4 (3 Preprocessing Stages (Cleaning, Case Folding, and Tokenization) + Random Forest & Hyperparameter Tuning) producing the best value, with Precision 81%, Recall 64%, F1-Score 70% and Accuracy 89%. With the best parameter values ??{'criterion': 'entropy', 'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}. This study shows that every experimental model that is optimized produces a higher value than experimental model that is not optimized.