Claim Missing Document
Check
Articles

Found 32 Documents
Search

Low Cost System for Face Mask Detection Based Haar Cascade Classifier Method Radimas Putra Muhammad Davi Labib; Sirojul Hadi; Parama Diptya Widayaka
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 21 No. 1 (2021)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v21i1.1187

Abstract

In December 2019, there was a pandemic caused by a new type of coronavirus, namely SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus 2) spread almost throughout the world. The World Health Organization (WHO) named it COVID-19 (Coronavirus Disease). To minimize the spread of the COVID-19, the Indonesian government announced a policy for the social distancing of 1-2 meters and wearing a medical mask. In this study, a mask detection system was built using the Haar Cascade Classifier method by detecting the facial areas such as the nose and lips. The study aims to distinguish between using masks and on the contrary. It is expected that the mask detection system can be implemented to provide direct warnings to people who do not wear masks in public areas. The results using the Haar Cascade Classifier method show that the system designed is able to detect faces, noses, and lips at a light intensity of 80-140 lux. The face is detected at a distance of 30-120cm, while the nose is at a distance of 30-60cm, while the lips are at a distance of 30-70cm. The system designed can perform the detection process at a speed of 5 fps. The overall test results obtained a success rate of 88,89%.
Sistem Rumah Pintar Menggunakan Google Assistant dan Blynk Berbasis Internet of Things Sirojul Hadi; Puspita Dewi; Radimas Putra Muhammad Davi Labib; Parama Diptya Widayaka
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 21 No. 3 (2022)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v21i3.1646

Abstract

Internet of things (IoT) merupakan topik yang banyak dikembangkan pada dekade terakhir. Pada saat ini, banyak pengembang teknologi membuat perangkat-perangkat pintar yang dapat mempermudah pekerjaan manusia. Sistem rumah pintar adalah salah satunya. Pada sistem rumah pintar, perangkatperangkat fisik dapat melakukan komunikasi melalui jaringan internet atau jaringan near cable lainnya untuk bertukar informasi atau melakukan perintah dari penghuni rumah. Agar bisa bertukar informasi maka perangkat fisik tersebut di integrasikan dengan sensor dan aktuator. Salah satu implementasi dari rumah pintar yaitu pengontrolan lampu yang dapat diaktifkan atau dinonaktifkan menggunakan perintah suara atau menggunakan gawai pengguna. Tujuan dari penelitian ini yaitu agar pengguna dapat mengontrol lampu rumah dengan menggunakan perintah suara dengan bantuan google assistant untuk mengenali kalimat yang di ucapkan oleh penghuni rumah. Metode yang digunakan dalam penelitian ini yaitu IoT. Metode komunikasi berbasis IoT memungkinkan terjadinya pertukaran data antar device. Hasil dari penelitian ini yaitu dapat dibangun sistem kontrol lampu menggunakan Blynk-Google assistant. Pada sistem tersebut telah di tambahkan fitur untuk memantau konsumsi daya listrik pengguna. Dari hasil pengujian yang dilakukan maka didapatkan hasil bahwa presentase keberhasilan dari sistem tersebut yaitu 96,667%. Keberhasilan dari sistem tersebut dipengaruhi oleh kekuatan sinyal internet dan ketepatan dalam pengucapan kata yang telah terprogram.