Claim Missing Document
Check
Articles

Analisis dan Perancangan User Interface dan User Experience BNI Life Mobile dengan Metode User Centered Design Putri, Jasmin Maula; Krisnanik, Erly; Nurramdhani, Helena; Tjahjanto, Tjahjanto; Mahdiana, Deni
Informatik : Jurnal Ilmu Komputer Vol 18 No 1 (2022): April 2022
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52958/iftk.v17i4.4319

Abstract

PT. BNI Life Insurance atau yang biasa dikenal dengan BNI Life merupakan perusahaan asuransi yang menyediakan berbagai produk seperti asuransi kehidupan (jiwa), kesehatan, pendidikan, investasi, pensiun, dan syariah. Dalam menjalankan transaksinya, BNI Life memiliki aplikasi bernama BNI Life Mobile untuk melakukan klaim asuransi yang dapat diunduh melalui Play Store dan App Store. Dengan adanya aplikasi BNI Life Mobile ini, diharapkan dapat memudahkan nasabah untuk mengklaim produknya. Tetapi, hal tersebut harus didukung dengan tampilan antar muka yang baik, menarik, dan mudah dipahami oleh pengguna. Penelitian ini bertujuan untuk melakukan analisis terhadap UI/UX pada aplikasi BNI Life Mobile untuk mengetahui nilai kegunaannya (usability) dengan menerapkan metode User Centered Design (UCD). Penerapan metode UCD dilakukan dengan melaksanakan kuesioner dan prototyping dengan teknik System Usability Scale (SUS). Penelitian ini menghasilkan suatu tampilan antar muka baru dalam bentuk prototype yang dapat digunakan sebagai saran untuk BNI Life dengan peningkatan nilai usability sebesar 20 agar pengguna aplikasi BNI Life Mobile dapat merasakan kegunaan dan experience yang baik saat menggunakannya.
Discovering Prescription Patterns in Type 2 Diabetes Based on Demographic Attributes Using Association Rules Yani, Putri; Hikmah, Maulida; Mahdiana, Deni
Indonesian Journal of Artificial Intelligence and Data Mining Vol 8, No 3 (2025): November 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v8i3.38082

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic disease that requires effective long-term therapeutic management. Appropriate and continuous treatment is crucial to prevent complications and improve patients’ quality of life. In clinical practice, prescription patterns vary significantly and are influenced by demographic and clinical characteristics. This study aimed to analyze prescription patterns of T2DM patients based on demographic and clinical attributes, and to identify frequently co-prescribed drug combinations using the Apriori algorithm. A total of 3,500 prescription records were obtained from RSUD H. Damanhuri Barabai. The analysis was conducted in two stages: (1) association between demographic factors (age, gender, blood pressure) and prescribed drugs, and (2) association among drugs regardless of patient demographics. With minimum support of 3%, confidence thresholds of 60% and 35%, and lift greater than 1.5, fifteen valid rules were identified in the demographic-to-drug analysis, and nine rules in the drug combination analysis. Strong patterns were observed, such as the prescription of Empagliflozin and Insulin Degludec for hypertensive patients aged 40–49, and the co-prescription of Acarbose and Glimepiride. These findings demonstrated that the Apriori algorithm was effective in identifying meaningful prescription patterns. Beyond methodological contributions, the results provide practical value for hospitals by supporting pharmacy managers in drug procurement planning, optimizing stock management, and designing distribution strategies that anticipate patient needs based on prescription trends.
Prediction of Student Academic Stress Levels Using the Decision Tree Algorithm and Particle Swarm Optimization Dzakiyyah, Syifa Ghina; Mahdiana, Deni
Indonesian Journal of Artificial Intelligence and Data Mining Vol 8, No 3 (2025): November 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v8i3.38081

Abstract

Academic stress was recognized as a major challenge for university students because it negatively affected learning outcomes, mental health, and overall well-being. The purpose of this research was to develop and validate a predictive model of student academic stress levels and to evaluate whether optimization techniques improved the performance of a baseline classifier. Data were collected from 413 active students of Universitas Sapta Mandiri from the 2022 and 2023 cohorts using the Perception of Academic Stress (PAS) scale, which consisted of 18 indicators, together with demographic, academic, and psychosocial attributes. The Decision Tree (DT) algorithm was selected for its interpretability and transparency in multi-class classification. To improve generalization, its parameters were optimized using Particle Swarm Optimization (PSO) with 10 particles and 20 iterations. The baseline model achieved an accuracy of 93 percent, with the highest recall observed in the low-stress group. After optimization, the accuracy increased to 95 percent, and the recall for the high-stress group reached 0.96, indicating greater sensitivity to students at risk. These results confirmed that the research objectives were achieved, as the integration of DT with PSO enhanced both accuracy and class balance. The proposed model was consistent with the intended purpose of supporting early detection and timely academic and psychological interventions in higher education institutions.
Co-Authors A Djafar, Muhammad Agung Abdurrahman, Faris Nur Achmad Fauzi adang badru jaman,anggun fergina, adang badru jaman,anggun fergina Ade Davy Wiranata Ade Setiadi Adi Saputra, Yulian Adiputra, Januar Ahadti Puspa Sari Airlambang, Dwiki Akhmad Wijaya Kusuma Amalia Khairunisa Andhika Arethuza Ari Anita Diana Arif Rahman Arifin Istighfari Zahro Atik Ariesta auddie mahlyda Bagas Wahyu Putratama Bayu Aji Susilo Brury Trya Sartana Chairul Kahfi Dahlia Mariyam Ohorella Daniel Iskandar Dedy Mirwansyah Devit Setiono Diah Ayu Lestari, Diah Ayu Diana Putri djuan narita Dzakiyyah, Syifa Ghina Erly Krisnanik Fahlevi, Noval Febriansyah Ramadhan Gita Cahyani, Annisa Putri Haderiansyah Haderiansyah Hasibuan, Tuhfatul Habibah Hikmah, Maulida Irgi Arifal Nulhakim janah purwanti Jejen Jaenudin Jumaryadi, Yuwan Ken Putri, Lulasnov Viola Prameswari Khafistia Hayyu Kharmytan, Yan Baktra Kraugusteeliana Kraugusteeliana Kusumawardhany, Nidya Kusumo Adi Lauw Li Hin Leonardus Adityo Toto Pratomo Maemunah Maemunah Mahendrasyah, Ihjal Manarul Haikal Casandy Manda, Seftifin Ratna Maulana, Hanif Mirza Sutrisno Mohammad Aldinugroho Abdullah Muhammad Abduh Khairullah Muhammad Arifin Mutia Hasanah Nurramdhani, Helena Purwo Setyo Aji putri yani, putri Putri, Jasmin Maula Rahmat Hidayat Ramadani, Romi Ratna Kusumawardani Ratna Kusumawardani Renaldi Setiawan Putra Rifqi Fitriadi Riskiyono, Fajar Rusdah Rusdah Rusdah Sarastuti, Elina Seftifin Ratna Manda Solehan Solehan Sri Devi Yulita Sugiarto S Supardi Supardi Syahid, Achyar Jhonathan Syifa Aryanti Tjahjanto, Tjahjanto Wiguna, Kevin Zahran, Aziz