Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Telematika

Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Amalia, Raisa; Faisal, Mohammad Reza; Indriani, Fatma; Budiman, Irwan; Mazdadi, Muhammad Itqan; Abadi, Friska; Mafazy, Muhammad Meftah
Telematika Vol 17, No 1: February (2024)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v17i1.2774

Abstract

The COVID-19 pandemic has permeated the global sphere and influenced nearly all nations and regions. Common symptoms of this pandemic include fever, cough, fatigue, and loss of sense of smell. The impact of COVID-19 on public health and the economy has made it a significant global concern. It has caused economic contraction in Indonesia, particularly in face-to-face interaction and mobility sectors, such as transportation, warehousing, construction, and food and beverages. Since the pandemic began, Twitter users have shared symptoms in their tweets. However, they couldn't confirm their concerns due to testing limitations, reporting delays, and pre-registration requirements in healthcare. The classification of text from Twitter data about COVID-19 topics has predominantly focused on sentiment analysis regarding the pandemic or vaccination. Research on identifying COVID-19 symptoms through social media messages is limited in the literature. The main objective of this study is to identify symptoms using word embedding techniques and the LSTM algorithm. Various techniques such as Word2Vec, GloVe, FastText, and a composite approach are used. LSTM is used for classification, improving upon the RNN technique. Evaluation criteria include accuracy, precision, and recall. The model with an input dimension of 147x100 achieves the highest accuracy at 89%. This study aims to find the best LSTM model for detecting COVID-19 symptoms in social media tweets. It evaluates LSTM models with different word embedding techniques and input dimensions, providing insights into the optimal text-based method for COVID-19 detection through social media texts.
Co-Authors A.A. Ketut Agung Cahyawan W AA Sudharmawan, AA Abdullayev, Vugar Achmad Zainudin Nur Adi Mu'Ammar, Rifqi Aflaha, Rahmina Ulfah Ahmad Juhdi Alfando, Muhammad Alvin Amalia, Raisa Andi Farmadi Andi Farmandi Arif, Nuuruddin Hamid Athavale, Vijay Anant budiman, irwan Deni Kurnia Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini, Dwi Emma Andini Faisal, Mohammad Reza Fathmah, Siti Fatma Indriani Fauzan Luthfi, Achmad Febrian, Muhamad Michael Halimah Halimah Halimah Hartati Hartati Indriani, Fatma Irwan Budiman Irwan Budiman Itqan Mazdadi, Muhammad M Kevin Warendra Mafazy, Muhammad Meftah Martalisa, Asri Mera Kartika Delimayanti Muhamad Fawwaz Akbar Muhammad Alkaff Muhammad Azmi Adhani Muhammad Denny Ersyadi Rahman Muhammad Haekal Muhammad Itqan Mazdadi Muhammad Khairin Nahwan Muhammad Mirza Hafiz Yudianto Muhammad Nazar Gunawan Muhammad Noor Muhammad Reza Faisal, Muhammad Reza Muhammad Sholih Afif Muliadi Muliadi Muliadi Aziz Muliadi Muliadi Nabella, Putri Nor Indrani Nugrahadi, Dodon Nurlatifah Amini Nursyifa Azizah Prastya, Septyan Eka Pratama, Muhammad Yoga Adha Putri Nabella Radityo Adi Nugroho Rahman Hadi Rahman Rahmat Ramadhani Reina Alya Rahma Rinaldi Riza Susanto Banner Rizal, Muhammad Nur Rizky Ananda, Muhammad Rizky, Muhammad Hevny Rudy Herteno SALLY LUTFIANI Saputro, Setyo Wahyu Saragih, Triando Hamonangan Sarah Monika Nooralifa Sa’diah, Halimatus Septyan Eka Prastya Setyo Wahyu Saputro Siti Napi'ah Tri Mulyani Ulya, Azizatul Umar Ali Ahmad Vina Maulida, Vina Wahyu Dwi Styadi Wahyu Saputro, Setyo Yunida, Rahmi