Claim Missing Document
Check
Articles

Found 26 Documents
Search

A Comparative Study of Public Opinion on Indonesian Police: Examining Cases in the Aftermath of the Kanjuruhan Football Disaster Purnawansyah, Purnawansyah; Raja, Roesman Ridwan; Darwis, Herdianti
Indonesian Journal of Data and Science Vol. 6 No. 2 (2025): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v6i2.235

Abstract

This research explores public sentiment towards the Indonesian police using sentiment analysis and machine learning techniques. The study addresses the challenge of understanding public opinion based on social media comments related to significant police cases. The aim is to compare reported satisfaction levels with actual public sentiment. Utilizing the Indonesian RoBERTa base IndoLEM sentiment classifier, comments were analyzed and preprocessed. The classification was conducted using Random Forest (RF) and Complement Naive Bayes (CNB) models, incorporating unigram and bi-gram features. Oversampling techniques were applied to handle data imbalance. The best-performing model, Random Forest with bi-gram features, achieved high evaluation scores, including a precision of 0.91 and accuracy of 0.91. The findings reveal significant insights into public opinion, contributing to improved law enforcement strategies and public trust.
Fourier Descriptor Pada Klasifikasi Daun Herbal Menggunakan Support Vector Machine Dan Naive Bayes Samir, Mutmainnah; Purnawansyah; Darwis, Herdianti; Umar, Fitriyani
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107309

Abstract

Daun herbal bermanfaat sebagai obat alternatif karena kandungan alaminya dapat menyembuhkan berbagai penyakit dan menjaga kesehatan tubuh. Klasifikasi citra daun herbal digunakan untuk membedakan jenis tanaman herbal berdasarkan bentuk daun. Penelitian ini Penelitian menggunakan Fourier Descriptor (FD) untuk mengekstraksi fitur pada daun herbal dan mengklasifikasikannya menggunakan metode Support Vector Machine (SVM) dan Naive Bayes (NB). SVM diimplementasikan dengan empat kernel yaitu Linear, polynomial, Radial Basis Function (RBF), dan sigmoid sementara Naive bayes diaplikasikan dengan tiga jenis kernel yaitu Gaussian, Multinomial, Bernoulli. Evaluasi kinerja menggunakan Precision, accuracy F1-Score dan Recall. Citra daun herbal terdiri dari daun katuk (Sauropus Androgynus) dan daun kelor (Moringa) dengan total 480 citra. Data tersebut dibagi menjadi 80% untuk training dan 20% untuk testing. Terdapat dua skenario pencahayaan yaitu kondisi gelap dan terang. Hasil penelitian menunjukkan bahwa perbandingan metode SVM dengan ekstraksi FD dimana kernel Linear mencapai akurasi sebesar 98% pada skenario gelap, sementara kernel Sigmoid memberikan akurasi terendah sebesar 44% pada scenario gelap maupun terang. Adapun hasil dari metode Naive bayes dengan ekstraksi FD pada kernel multinomial menghasilkan akurasi tertinggi sebesar 83% pada terang, sedangkan kernel Bernoulli memberikan akurasi terendah sebesar 46% pada skenario gelap dan terang. Berdasarkan perbandingan hasil klasifikasi dari kedua metode, disarankan bahwa metode SVM pada ekstraksi FD lebih direkomendasikan dalam proses klasifikasi daun herbal. Penelitian ini dapat memberikan rekomendasu pengembang sistem untuk menetapkan metode yang tepat dalam klasifikasi citra daun herbal.   Abstract Herbal leaves are beneficial as alternative medicine because their natural content can cure various diseases and maintain a healthy body. The classification of herbal leaf images is used to differentiate types of herbal plants based on leaf shapes. This study utilizes Fourier Descriptor (FD) to extract features from herbal leaves and classify them using the Support Vector Machine (SVM) and Naive Bayes (NB) methods. SVM is implemented with four kernels namely linear, polynomial, Radial Basis Function (RBF), and Sigmoid while Naive bayes is applied with three types of kernels namely Gaussian, multinomial, Bernoulli. Performance evaluation includes precision, accuracy, F1- score and recall. Herbal leaf images consist of leaves (Sauropus Androgynus) and moringa leaves with a total of 480 images. The data is divided into 80% for training and 20 % for testing. There are two lighting scenarios, namely dark and light conditions. The result of this study shows a comparison of the SVM method with FD extraction where the Linear kernel achieves the highest accuracy of 98% in dark scenarios, while the Sigmoid kernel provides the lowest accuracy of 44% in both dark and light scenarios. The result of the naïve bayes method with FD extraction on the Multinomial kernel yield the highest accuracy of 83% in light scenarios while the Bernoulli kernel provides the lowest accuracy 46% in both dark and light scenarios. Based on the comparison of the classification result of the two methods, it is suggested that the SVM method for FD extraction is more recommended in the herbal leaf classification process. This research can provide recommendation for system developers to determine the appropriate method for classifying herbal leaf images.  
DIGITAL IMAGE CLASSIFICATION OF HERBAL LEAVES USING KNN AND CNN WITH GLCM FEATURES Zahirah, Dinna; Purnawansyah, Purnawansyah; Kurniati, Nia; Darwis, Herdianti
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.1162

Abstract

Geographical position and having a tropical climate make Indonesia known for its abundant biodiversity, one of which is herbal leaves. Indonesia has more than 2039 species that fall into the category of herbal medicinal plants. Herbal leaves are plants that are used as an alternative to natural disease healing. The large number of herbal leaf plants makes it difficult for people to distinguish between herbal plants and non-herbal plants, except when herbal leaf plants bear fruit or bloom. With advances in technology, many studies have been conducted to identify types of herbal plants, one of which is to identify the characteristics of the leaves. In this study, image recognition of herbal leaves was carried out using the K-Nearest Neighbor and Convolutional Neural Network methods with feature extraction of the Gray Level Co-occurance Matrix. By using these 2 methods, the data collected in this study were 480 leaf images which were then divided into 80% testing data and 20% training data. The data used are in the form of Sauropus androgynus and Moringa leaves. Based on the test results, the Convolutional Neural Network method which is suggested in the herbal leaf image classification which has an accuracy value of 96%..
Sistem Pakar Mendiagnosis Penyakit Gangguan Mental dengan Metode Certainty Factor Berbasis Android Darwis, Herdianti; Rahmasari, Putri Aulia; Irawati, Irawati
Buletin Sistem Informasi dan Teknologi Islam (BUSITI) Vol 6, No 2 (2025)
Publisher : Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/busiti.v5i4.2391

Abstract

Sistem pakar yakni sebuah sistem yang diciptakan berdasarkan keahlian seorang pakar pada bidang terkhusus kedalam sebuah program komputer. Penelitian ini membahas tentang Sistem Pakar Mendiagnosis Penyakit Gangguan Mental Dengan  Metode Certainty Factor. Gangguan mental yakni sebuah keadaan kesehatan yang memengaruhi perasaan, pemikiran, perilaku, serta suasana hati atau gabungan diantaranya. Metode certainty factor dipakai sebagai nilai guna melakukan pengukuran taraf keyakinan penyakit gangguan mental. Penelitian ini mempunyai tujuan guna menghasilkan aplikasi yang bisa memberi bantuan masyarakat dalam melakukan diagnosa dini pada gejala awal penyakit gangguan mental. Pada pengujian akurasi yang dilakukan menghasilkan nilai akurasi pada sistem yaitu sebesar 80% berdasarkan 10 sampel. Aplikasi sistem pakar melakukan diagnosis penyakit gangguan mental telah berhasil diimplementasikan kedalam sistem memakai metode certainty factor guna mengambil kesimpulan berdasarkan pengetahuan pakar.
Hybrid Fourier Descriptor Naïve Bayes dan CNN pada Klasifikasi Daun Herbal Backar, Sunarti Passura; Purnawansyah, Purnawansyah; Darwis, Herdianti; Astuti, Wistiani
Jurnal Informatika: Jurnal Pengembangan IT Vol 8, No 2 (2023)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v8i2.5186

Abstract

Plants are vital to human life on earth, and the leaves and their whole parts have many benefits. These parts of the plant can help distinguish between different species. The leaf identification can be performed at any time, while the other parts of the plants can only be identified at a certain time. The study aims to classify two types of herbs i.e. saur-opus androgynous and moringa oleifera, implementing the Fourier Descriptor method to extract the shape and texture features. In the process of classification using the Naïve Bayes method with three types of nuclei (Gaussian, Bernoulli, and Multinomial) and a Convolutional Neural Network. The testing process was carried out using two scenarios, dark and light, where each scenario consisted of 240 images for a total of 480 images divided into 20% of the data testing and 80% of the training data. The Fourier Descriptor-Bernoulli Naive Bayes method gives the lowest accuracy in both light and dark scenarios, at 46% and 52%, respectively. As for the classification of herbal leaves using a combination of the Fourier Descriptor-Convolutional Neural Network method, it is recommended to be used in light image scenarios and Fourier Descriptor-Gaussian Naive Bayes in the dark scenarios because it is able to detect herbal leaf types with 100% accuracy.
Comparative Machine Learning Models for Dementia Prediction Using SMOTE Puspitasari, Rahma; Amaliah, Tazkirah; Darwis, Herdianti
International Journal of Artificial Intelligence in Medical Issues Vol. 3 No. 2 (2025): International Journal of Artificial Intelligence in Medical Issues
Publisher : Yocto Brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijaimi.v3i2.351

Abstract

Dementia is a progressive neurodegenerative disorder that leads to cognitive decline and significantly affects patients' quality of life. Early detection is crucial for determining appropriate medical interventions and slowing disease progression. This study aims to develop a machine learning-based dementia prediction model and compare the performance of three algorithms: Support Vector Machine (SVM), Random Forest (RF), and XGBoost. The dataset, obtained from the Kaggle platform, consists of 373 MRI-based patient records categorized into three diagnosis groups: Converted, Demented, and Nondemented. To address class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied. Experimental results show that the XGBoost algorithm achieved the best performance, with an accuracy of 93.86%, precision of 94%, recall of 94%, and F1-score of 94%, outperforming SVM and Random Forest. The application of SMOTE improved the model’s sensitivity to minority classes. The combination of XGBoost and SMOTE demonstrates high accuracy in dementia prediction and holds potential for integration into clinical decision support systems (CDSS) to assist early diagnosis.