p-Index From 2021 - 2026
6.165
P-Index
This Author published in this journals
All Journal Jurnal Informatika dan Teknik Elektro Terapan JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI JURNAL INSTEK (Informatika Sains dan Teknologi) JURNAL TEKNOLOGI DAN OPEN SOURCE Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Journal of Information Systems and Informatics bit-Tech Journal of Economics, Business, and Government Challenges Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC) JATI (Jurnal Mahasiswa Teknik Informatika) International Journal of Advances in Data and Information Systems Jurnal Sistem Informasi dan Sains Teknologi Nusantara Science and Technology Proceedings Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) International Journal of Engineering, Science and Information Technology Jurnal Ilmiah Wahana Pendidikan KLIK: Kajian Ilmiah Informatika dan Komputer JITSI : Jurnal Ilmiah Teknologi Sistem Informasi COMSERVA: Jurnal Penelitian dan Pengabdian Masyarakat Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK) PROSISKO : Jurnal Pengembangan Riset dan observasi Rekayasa Sistem Komputer Jurnal Teknik Mesin, Industri, Elektro dan Informatika Journal of Artificial Intelligence and Digital Business Jurnal Ilmiah Teknik Informatika dan Komunikasi Scientica: Jurnal Ilmiah Sains dan Teknologi Coreid Journal Journal of Elektronik Sistem InformasI Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika Journal of Emerging Information Systems and Business Intelligence (JEISBI) Jurnal Teknik Informatika dan Teknologi Informasi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Coreid Journal

Sentiment Analysis on Twitter Social Media Regarding Depression Disorder Using the Naive Bayes Method Lavenia, Nur Lickha; Permatasari, Reisa
CoreID Journal Vol. 1 No. 2 (2023): July 2023
Publisher : CV. Generasi Intelektual Digital

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60005/coreid.v1i2.14

Abstract

Depression disorder is a serious issue in mental health that affects many individuals worldwide. This research analyzes the sentiments related to depression disorder on Twitter using the Naïve Bayes method. Depression-related tweet data was collected through snscrape and processed to eliminate irrelevant information. Three Naïve Bayes methods, namely Multinomial, Gaussian, and Bernoulli, were compared to classify positive, negative, or neutral sentiments in each tweet. The results of the study indicate that Multinomial Naïve Bayes exhibited the best performance with an accuracy rate of 90.13%, followed by Gaussian Naïve Bayes (88.38%), and Bernoulli Naïve Bayes (85.37%).