Claim Missing Document
Check
Articles

Identifikasi Kupu-Kupu Menggunakan Ekstraksi Fitur Deteksi Tepi (Edge Detection) dan Klasifikasi K-Nearest Neighbor (KNN) Rico Andrian; Saipul Anwar; Meizano Ardhi Muhammad; Akmal Junaidi
Jurnal Teknik Informatika dan Sistem Informasi Vol 5 No 2 (2019): JuTISI
Publisher : Maranatha University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28932/jutisi.v5i2.1744

Abstract

Lampung has the only breeding of in situ butterflies engineered in Indonesia namely Gita Persada Butterfly Park, which has approximately 211 butterfly species. Butterflies can be classified according to patterns found on the wings of a butterfly. The weakness of the human eye in distinguishing patterns on butterflies is a foundation in building butterfly identification based on pattern recognition. This study uses 6 species of butterflies: Papilio memnon, Troides helena, Papilio nephelus, Cethosia penthesilea, Papilio peranthus, and Pachliopta aristolochiae. The butterfly dataset used is 600 images. The butterfly image used is in the form of the upper wing side. The pre-processing stage uses the method of scaling, segmentation, and grayscale. The feature extraction stage uses the canny edge detection method by applying smoothing, edge strength, edge direction, non maximum suppression, and hyterisis thresholding. The classification phase uses the K-Nearest Neighbor (KNN) method with values k = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 obtained under the Rule of Thumb. The identification of butterfly require a classification time of 8 seconds. The highest accuracy is obtained from testing with a value of k = 5 by 80%.
Pengembangan Sistem Informasi Manajemen Supplier dan Barang dengan Extreme Programming Astria Hijriani; Jannati Asri Safitri; Raden Irwan Adi Pribadi; Rico Andrian
Jurnal Teknik Informatika dan Sistem Informasi Vol 6 No 1 (2020): JuTISI
Publisher : Maranatha University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28932/jutisi.v6i1.2132

Abstract

The case study was taken from one of trading companies in Lampung. The company sells Muslim fashion products from a large number of suppliers. Suppliers data is recorded in detail manually, as well as products recorded. Manual data collection can result in recording errors, data easily tucked, or not recorded. This research develops an information system to help the company in data collection of suppliers and products automatically based on web using Laravel as a framework. This system is built using extreme programming methods and has features that focus on collecting suppliers, products, and product shipments. The results of system testing using the black box testing method shows that the system has fulfilled functional requirements and user needs. Keywords— Management Information System; Product; Supplier.
Development of EfficientNet Model on Broad and Needles Leaved Species Tree Crowns with Forest Health Monitoring Method Hernani, Livia Ayu Istoria; Andrian, Rico; Safei, Rahmat; Tristiyanto, Tristiyanto
Indonesian Journal of Artificial Intelligence and Data Mining Vol 8, No 2 (2025): July 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v8i2.37463

Abstract

Forest Health Monitoring (FHM) is a method for monitoring forest health conditions using various ecological indicators, such as tree canopy density and transparency. This research aims to evaluate the performance of the EfficientNet model in classifying the density and transparency values of broadleaf and coniferous tree canopies. The dataset consists of 3,956 tree canopy images collected from Tahura Wan Abdul Rachman (WAR), a conservation forest in Lampung, and is divided into 10 classes based on magic cards. Magic cards are a learning medium in the form of picture cards containing values of density and transparency. This research uses the EfficientNet-B0 architecture with certain training parameters. The results show that the EfficientNet-B0 model provides the best performance with an accuracy of 90.00%, a precision of 97.00%, a recall of 97.00%, and an F1-score of 97.00%. This research shows that EfficientNet can be used effectively to assist decision making related to automatic visual monitoring of forest health.
Implementasi YOLOv10 untuk Deteksi Kerapatan dan Transparansi Tajuk Pohon melalui Aplikasi Mobile Alkhadafi Saddam Simparico; Rico Andrian; Rahmat Safe'i; Admi Syarif
JURNAL FASILKOM Vol. 15 No. 2 (2025): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v15i2.9581

Abstract

Kerapatan dan transparansi tajuk pohon merupakan indikator penting kesehatan hutan yang berpengaruh terhadap keseimbangan ekosistem dan keanekaragaman hayati. Penelitian ini mengembangkan sistem deteksi real-time berbasis model YOLOv10 yang dioptimalkan untuk perangkat mobile melalui konversi ke TensorFlow Lite, sehingga memungkinkan inferensi cepat dan efisien di lapangan tanpa memerlukan perangkat komputasi besar. Dataset yang digunakan terdiri dari 5.000 citra tajuk pohon yang mencakup sepuluh kelas variasi kerapatan dan transparansi, mewakili lima jenis daun jarum dan lima jenis daun lebar dengan perbedaan morfologi dan karakteristik transmisi cahaya. Pengambilan data dilakukan pada berbagai sudut pandang untuk meningkatkan ketahanan model terhadap kondisi nyata di lapangan. Data dibagi menjadi 70% untuk pelatihan, 10% untuk validasi, dan 20% untuk pengujian. Hasil evaluasi menunjukkan akurasi 97,7% dengan nilai precision, recall, dan F1-score yang tinggi di setiap kelas. Sistem ini berpotensi mempercepat proses survei lapangan, meningkatkan akurasi pemantauan ekosistem, dan menjadi alat pendukung pengambilan keputusan dalam pengelolaan hutan serta program konservasi. Pendekatan ini menawarkan solusi praktis dan terukur untuk pemantauan hutan berkelanjutan dengan memanfaatkan teknologi computer vision mutakhir di perangkat mobile
Pelatihan Pemantauan Kesehatan Hutan Di KTH Maju Jaya Untuk Pengelolaan Hutan Rakyat Lestari Safe'i, Rahmat; Yuwono, Slamet Budi; Andrian, Rico; Larasati, Novi Yunita; Sari, Dini Ratna; Asyidiqi, Abdilah
Journal of Empowerment Community Vol. 7 No. 2 (2025): Oktober 2025
Publisher : Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/jec.v7i2.2450

Abstract

Pemantauan Kesehatan hutan rakyat yang dikelola masyarakat, khususnya oleh Kelompok Tani Hutan (KTH) Maju Jaya di Desa Kubu Batu, Kecamatan Way Khilau, Kabupaten Pesawaran dimaksudkan untuk melakukan pemantauan dan penilaian kondisi Kesehatan hutan rakyat pada saat ini, perubahan, dan kecenderungan yang akan terjadi berdasarkan indikator ekologis Kesehatan hutan rakyat. Tujuan pengabdian ini adalah untuk meningkatkan pengetahuan dan keterampilan anggota KTH Maju Jaya dalam melakukan pemantauan kesehatan hutan rakyat. Metode yang digunakan adalah persiapan, pelaksanaan, dan evaluasi. Hasil evaluasi menunjukkan bahwa anggota KTH mengalami peningkatan pengetahuan dan keterampilan dalam pemantauan kesehatan hutan rakyat sebesar 37,5% dengan uji normalitas menunjukkan bahwa kegiatan pelatihan berhasil mendorong sebagian besar anggota KTH ke tingkat kompetensi yang lebih baik. Hal ini mendukung tujuan pengabdian dalam memfasilitasi peningkatan pengetahuan dan keterampilan anggota KTH dalam pemantauan kesehatan hutan rakyat. Dengan demikian, bahwa dengan pelatihan dapat meningkatkan pengetahuan dan keterampilan terkait pembuatan klaster plot, pengukuran indikator ekologis kesehatan hutan rakyat, dan penilaian kesehatan hutan rakyat serta dapat terbentuknya tim pemantau dan penilai kesehatan hutan rakyat di tingkat tapak untuk mewujudkan pengelolaan hutan rakyat secara lestari.
Implementation of Convolutional Neural Network for Classification of Density Scale and Transparency of Needle Leaf Types Sriatna, Diah Adi; Andrian, Rico; Safei, Rahmat
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 1 (2024): March 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i1.26258

Abstract

Crown density and transparency are among the parameters in determining forest health using magic card. This is still less effective because it only relies on direct vision. Therefore, a more sophisticated and accurate application using digital image technology is needed. Convolutional Neural Network (CNN) is designed to help recognize objects in images with various positions. There are 1000 images of needle leaf types with ten classes of crown density and transparency for every kind of needle leaf, including araucaria heterophylla, cupressus retusa, pine merkusii, and shorea javanica, which are classified using AlexNet. AlexNet is a CNN architecture that has eight feature extraction layers. The AlexNet model succeeded in classifying coniferous trees on the scale of density and crown transparency with an accuracy level of 87.00% for araucaria heterophylla, cupressus retusa 96.00%, merkusii pine 86.00%, and shorea javanica 95.00%. Although some errors were still found in classification, this was caused by similar patterns and similar image positions. It is hoped that the results of this research will be used in monitoring forest health in the future.
Performance Comparison Between LeNet And MobileNet In Convolutional Neural Network for Lampung Batik Image Identification Andrian, Rico; Herwanto, Hans Christian; Taufik, Rahman; Kurniawan, Didik
Scientific Journal of Informatics Vol 11, No 1 (2024): February 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i1.49451

Abstract

Purpose: The rich cultural heritage of Indonesia includes the intricate art of batik, which varies across regions with unique patterns and motifs. This study focuses on Lampung batik, a distinctive type of batik, representing Lampung Province, Indonesia. Leveraging Convolutional Neural Network (CNN) architectures, namely LeNet-5 and MobileNet, the research compares their effectiveness in recognizing and classifying Lampung batik motifs. Data augmentation techniques, including rotation, brightness, and zoom, were employed to enhance the dataset and improve model performance.Methods: The study collected 500 Lampung batik images categorized into 10 classes which were then augmented and divided into training, validation, and testing sets. The model was created using a Deep Learning approach, LeNet And MobileNet. Both models were trained using identical hyperparameters and evaluated based on their accuracy in classifying Lampung batik motifs.Results: The results demonstrate an accuracy of 99.33% for LeNet-5 and 98.00% for MobileNet, outperforming previous studies. LeNet-5, particularly with augmentation, exhibited superior precision and recall in classifying Lampung batik motifs. This research underscores the efficacy of CNN architectures, coupled with data augmentation techniques, in accurately identifying intricate cultural artifacts like Lampung batik.Novelty: The Dharmagita learning model using a mobile application is a new model that has not existed before.
Co-Authors . Wamiliana Adi Pribadi, Raden Irwan Admi Syarif Admi Syarif Agatha Beny Himawan Ahmad Adi Wijaya, Ahmad Adi Akmal Junaidi Alkhadafi Saddam Simparico Ananto Danu Prasetyo Andikha Yunar Cornelius Dabukke Andriyan Hutomo Ardiansyah Ardiansyah Aristoteles, Aristoteles Astria Hijriani Astria Hijriani Astria Hijriani, Astria Asyidiqi, Abdilah Ayu Taqiya Ulfa Basir Efendi Dedy Hermawan Dedy Miswar Destian ade anggi Sukma Dian Riskiyana Didik Kurniawan Dwi Sakethi Dwi Sakethi Dwi Sakethi Dwi Sakethi Eka Fitri Jayanti Eko Septiawan Favorisen R. Lumbanraja Febi Eka Febriansyah Flaurensia Riahta Tarigan Florencia Irena Gandadipoera, Faishal Hariz Makaarim Heningtyas, Yunda Hernani, Livia Ayu Istoria Herwanto, Hans Christian Igo Febrianto Indrianti Indrianti Irawati, Anie Rose Ismail Indra Pratama Jannati Asri Safitri Kristina Ademariana Kurnia Muludi Larasati, Novi Yunita Lisa Suarni Lona Ertina M. Juandhika Rizky Machudor Yusman Maharani, Devi Malik Abdul Azis Malik Abdul Aziz Meizano Ardhi Muhammad Muhammad Chairuddin Muhammad Iqbal Muhammad Iqbal Muhammad, Meizano Ardhi Muhaqiqin Muhaqiqin Novita Dwilestari Octarina, Nur Ayu Prabowo, Rizky Prabowo, Rizky Pradana Marlando Qonitati Qonitati RA Dina Nia Pratiwi Raden Irwan Adi Pribadi Rahman Taufik Rahmat Safe'i Reda Meiningtiyas Rika Ningtias Azhari S Susiyani Safitri, Jannati Asri Saipul Anwar Saipul Anwar Sari, Dini Ratna Sholehurrohman, Ridho Slamet Budi Yuwono Sriatna, Diah Adi Sunita Agustina TANJUNG, AKBAR RISMAWAN Taufik, Rahman Tri Maryono Tristiyanto Tristiyanto Utami, Noera Yudhiarti Verina, Vira Wamiliana Wamiliana Wartariyus Wartariyus Zuhri Nopriyanto