Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Tropical Aquatic and Soil Pollution

The Effect of Septage Sludge and Oxidizing Agents in the Microbial Fuel Cells Generating Electricity Safitri, Vidia Wahyu Meidy; Yuniarto, Adhi; Purnomo, Alfan; Marhendra, Bara Awanda
Tropical Aquatic and Soil Pollution Volume 3 - Issue 2 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/tasp.v3i2.272

Abstract

Earlier research demonstrated the efficacy of microbial fuel cells in both wastewater treatment and renewable electric current generation. In this process, microbial fuel cells harness the potential of wastewater as a substrate and energy source, enabling microorganisms to generate electric current. Introducing microorganisms sourced from septage sludge acts as a microbial catalyst. Additionally, tofu wastewater is employed as a nutritional resource to support the growth of these microorganisms. A dual-chamber reactor was utilized to carry out this study, featuring an anode and a cathode connected through a salt bridge. Various substrate variations were performed on the anode, specifically with a combination of tofu liquid waste and septage sludge at ratios of 1:1, 1:2, and 1:3. Additionally, different electrolyte solutions, such as KMnO4 and K3(Fe(CN)6), were used at the cathode. Using different electrolyte solutions as electron acceptors can enhance the electric current production generated. The study spanned 240 hours of operation, during which electric current, voltage, COD, and BOD measurements were taken at 48-hour intervals. The findings revealed that including septage sludge in a 1:3 ratio yielded the highest current strength compared to other substrate variations, measuring 16.34 mA. When using a 0.25 M KMnO4 as an electrolyte solution, the voltage recorded was 8.78 V. Additionally, the most effective removal of COD and BOD content was achieved with a substrate ratio of 1:3 in the presence of KMnO4, achieving removal rates of 95.12% and 96.45%, respectively. These results indicate that adding septage sludge contributes to increased electricity current production.
Fabrication and Characterization of Modified PVDF Membrane Using TiO2 for Wastewater Containing Paracetamol Zainiyah, Isti Faizati; Yuniarto, Adhi; Fairuzi, Intania Ika; Purwanti, Ipung Fitri; Marsono, Bowo Djoko
Tropical Aquatic and Soil Pollution Volume 5 - Issue 1 - 2025
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/tasp.v5i1.586

Abstract

Modified membranes have gained significant attention due to their ability to enhance performance. Although membranes modified with TiO₂ nanoparticles have been studied, no research has specifically addressed their effectiveness in removing paracetamol contaminants, despite the widespread use of paracetamol and its potential contribution to increased waste production. Therefore, in this study, polyvinylidene fluoride (PVDF) membranes were modified with TiO₂ nanoparticles, providing new insights into the use of PVDF-TiO₂ specifically for paracetamol wastewater treatment. The results showed that TiO₂ nanoparticle-modified membranes exhibited better performance than unmodified membranes. The unmodified membrane had a lower performance rate (69.18%) compared to membranes modified with titanium isopropoxide (TTIP) at concentrations of 1 M (93.35%) and 0.5 M (90.05%). These results were supported by Scanning Electron Microscopy (SEM) analysis, which revealed that the unmodified membrane had an average pore size of 0.998 μm, whereas the membranes modified with TTIP at 1 M and 0.5 M had average pore sizes of 0.615 μm and 0.791 μm, respectively. The larger pores in the unmodified membrane allowed larger particles to pass through, reducing its filtration efficiency. These findings underscore the potential of TiO₂ nanoparticle-modified membranes for significantly enhancing water purification processes, particularly in the removal of pharmaceutical contaminants like paracetamol. Ultimately, this research could contribute to the development of more effective strategies for managing pharmaceutical waste in water sources, leading to improved environmental protection and public health.