Claim Missing Document
Check
Articles

Neural Network for Earthquake Prediction Based on Automatic Clustering in Indonesia Mohammad Nur Shodiq; Dedy Hidayat Kusuma; Mirza Ghulam Rifqi; Ali Ridho Barakbah; Tri Harsono
JOIV : International Journal on Informatics Visualization Vol 2, No 1 (2018)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1115.541 KB) | DOI: 10.30630/joiv.2.1.106

Abstract

A model of artificial neural networks (ANNs) is presented in this paper to predict aftershock during the next five days after an earthquake occurrence in selected cluster of Indonesia with magnitude equal or larger than given threshold. The data were obtained from Indonesian Agency for Meteorological, Climatological and Geophysics (BMKG) and United States Geological Survey’s (USGS). Six clusters was an optimal number of cluster base-on cluster analysis implementing Valley Tracing and Hill Climbing algorithm, while Hierarchical K-means was applied for datasets clustering. A quality evaluation was then conducted to measure the proposed model performance for two different thresholds. The experimental result shows that the model gave better performance for predicting an aftershock occurrence that equal or larger than 6 Richter’s scale magnitude.
Adaptive Neural Fuzzy Inference System and Automatic Clustering for Earthquake Prediction in Indonesia Mohammad Nur Shodiq; Dedy Hidayat Kusuma; Mirza Ghulam Rifqi; Ali Ridho Barakbah; Tri Harsono
JOIV : International Journal on Informatics Visualization Vol 3, No 1 (2019)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1452.798 KB) | DOI: 10.30630/joiv.3.1.204

Abstract

Earthquake is a type of natural disaster. The Indonesian archipelago located in the world's three mega plates; they are Australian plate, Eurasian plate, and Pacific plate. Therefore, it is possible for applied of earthquake risk of mitigation. One of them is to provide information about earthquake occurrences. This information used for spatiotemporal analysis of earthquakes. This paper presented Spatial Analysis of Magnitude Distribution for Earthquake Prediction using adaptive neural fuzzy inference system (ANFIS) based on automatic clustering in Indonesia. This system has three main sections: (1) Data preprocessing, (2) Automatic Clustering, (3) Adaptive Neural Fuzzy Inference System. For experimental study, earthquake data obtained Indonesian Agency for Meteorological, Climatological, and Geophysics (BMKG) and the United States Geological Survey’s (USGS), the year 2010-2017 in the location of Indonesia. Automatic clustering process produces The optimal number of cluster, that is 7 clusters. Each cluster will be analyzed based on earthquake distribution. Its calculate the b value of earthquake to get the seven seismicity indicators. Then, implementation for ANFIS uses 100 training epochs, Number of membership function (MFs) is 2, MFs type input is gaussian membership function (gaussmf). The ANFIS result showed that the system can predict the non-occurrence of aftershocks with the average performance of 70%.
Big Data Environment for Realtime Earthquake Data Acquisition and Visualization Louis Nashih Uluwan Arif; Ali Ridho Barakbah; Amang Sudarsono; Renovita Edelani
JOIV : International Journal on Informatics Visualization Vol 3, No 4 (2019)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3512.439 KB) | DOI: 10.30630/joiv.3.4.320

Abstract

Indonesia is a country that has the highest level of earthquake risk in the world. In the past 10 years, there have been ± 90,000 earthquake events recorded and always increasing along with the explosion of earthquake data occurs at any time. The process of collecting and analyzing earthquake data requires more effort and takes a long computational time. In this paper, we propose a new system to acquire, store, manage and process earthquake data in Indonesia in real-time, fast and dynamic by utilizing features in the Big Data Environment. This system improves computational performance in the process of managing and analyzing earthquake data in Indonesia by combining and integrating earthquake data from several providers to form a complete unity of earthquake data. An additional function is the existence of an API (Application Programming Interface) embedded in this system to provide access to the results of earthquake data analysis such as density, probability density function and seismic data association between provinces in Indonesia. The process in this system has been carried out in parallel and improved computing performance. This is evidenced by the computational time in the preprocessing process on a single-core master node, which requires 55.6 minutes, but a distributed computing process using 15 cores can speeds up with only 4.82 minutes.
Incremental Associative Mining based Risk-Mapping System for Earthquake Analysis in Indonesia Renovita Edelani; Ali Ridho Barakbah; Tri Harsono; Louis Nashih Uluwan Arif
JOIV : International Journal on Informatics Visualization Vol 3, No 4 (2019)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1760.156 KB) | DOI: 10.30630/joiv.3.4.319

Abstract

Indonesia is one of the largest archipelagic countries in the world that has the highest risk of an earthquake. The major causes of earthquakes in this country are plate movements and volcanic activity. Earthquakes in Indonesia has a cause and effect relationship between each province. This disaster caused severe damage including a lot of people to get killed, injured and lose their money and property. We must minimize the impact of the earthquake by forming earthquake risk mapping. The risk of seismicity in Indonesia can vary each year, so it needs to be analyzed how the changes in risk are each addition of earthquake data. This paper proposes an earthquake risk mapping system with Associative Mining based on incremental earthquake data that have the highest values of confidence rates from the seismic association between provinces in Indonesia. The system uses the Incremental Association rule method to see the trend in the value of changes in confidence for each addition of earthquake data every 5 years. This system proposes 3 main features, which are (1) Data Retrieval and Preprocessing, (2) Association Rule Mining, (3) Incremental Associative Mining based risk mapping. For the experimental study, the system used data from 1963-2018. The results show that the provinces of Maluku, North Maluku, Nusa Tenggara Timur, North Sulawesi, and Papua have an incremental association risk of an earthquake.
Komputasi Budaya Untuk Pencarian Gambar Semantik Pada Lukisan Budaya Indonesia Dengan Deteksi Dan Informasi Aliran Lukisan Ratri Cahyaning Winedhar; Ali Ridho Barakbah; Achmad Basuki; Arvita Agus Kurniasari
Jurnal Teknologi Informasi dan Terapan Vol 8 No 1 (2021)
Publisher : Jurusan Teknologi Informasi Politeknik Negeri Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25047/jtit.v8i1.224

Abstract

Lukisan merupakan salah satu gambaran kompleks yang mencerminkan pengamatan dan perasaan seniman terhadap lingkungan. Kondisi ini memperluas kebutuhan akan sistem pendeteksi citra budaya karena masyarakat awam yang kurang memiliki pengalaman artistik akan sulit mendapatkan kesan lukisannya. Oleh karena itu, peneliti menekankan penerapan lukisan budaya Indonesia ke dalam aplikasi mobile. Sistem yang diusulkan telah diimplementasikan pada 239 lukisan budaya Indonesia yang terdiri dari lima kategori gaya lukisan. Kategorinya adalah abstraksionisme, naturalisme, ekspresionisme, realisme, dan romantisme. Sistem mengekstrak 3 fitur, yaitu fitur warna, bentuk, dan tekstur. Ekstraksi ciri warna menggunakan Histogram 3D Color Vector Quantization. Ekstraksi fitur bentuk menggunakan Connected Component Labeling Algorithm (CCL) dengan menghitung nilai area, diameter setara, luas, convex hull, soliditas, eksentrisitas, dan perimeter masing-masing objek. Ekstraksi fitur tekstur menggunakan Gabor Transformation dengan 40 kernel. Sedangkan untuk ekstraksi impresi dilakukan survey terhadap beberapa orang tentang impresi lukisan budaya Indonesia. Survei ini dilakukan terhadap responden yang memahami seni lukis seperti pelukis, pemerhati lukisan, dan orang-orang yang berkecimpung di dunia seni rupa. Untuk menunjukkan gaya lukisan peneliti menggunakan proses klasifikasi menggunakan K-Nearest Neighbor. Hasil eksperimen menunjukan fitur warna sebagai fitur terbaik dalam impression query
Analisa Perbandingan Metode Hierarchical Clustering, K-Means dan Gabungan Keduanya dalam Cluster Data (Studi Kasus: Problem Kerja Praktek Teknik Industri ITS) Tahta Alfina; Budi Santosa; Ali Ridho Barakbah
Jurnal Teknik ITS Vol 1, No 1 (2012)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (570.646 KB) | DOI: 10.12962/j23373539.v1i1.1794

Abstract

Saat ini, konsep data mining semakin dikenal sebagai tools penting dalam manajemen informasi karena jumlah informasi yang semakin besar jumlahnya. Salah satu teknik yang dikenal dalam data mining adalah clustering,  berupa proses pengelompokan sejumlah data atau objek ke dalam cluster (group) sehingga setiap dalam cluster tersebut akan berisi data yang semirip mungkin dan berbeda dengan objek dalam cluster yang lainnya. Clustering memiliki dua metode, yaitu partisi dan hierarki. Dua metode ini memiliki kelebihan dan kekurangan masing-masing, dan dengan menggabungkan keduanya dapat diperoleh hasil cluster yang lebih baik. Dari hasil cluster dengan menggunakan data problem Kerja Praktek Jurusan Teknik Industri ITS, maka diperoleh hasil bahwa gabungan metode Single Linkage Clustering dan K-means memberikan hasil cluster yang lebih baik dengan parameter uji cluster variance dan metode silhouette coefisien.
Smart I’rab: Smart Aplicasion for Arabic Grammar Learning Syd. Ali Zein Farmadi; Ali Ridho Barakbah; Entin Martiana Kusumaningtyas
EMITTER International Journal of Engineering Technology Vol 1 No 1 (2013)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (9280.381 KB) | DOI: 10.24003/emitter.v1i1.9

Abstract

Arabic grammar, known as nahwu, is necessary to comprehend the Holy Qur’an that is completely written in Arabic. However, many people get trouble to study this skill because there are various kinds of word formation and sentences that may be created from a single verb, noun, adjective, subject, predicate, object, adverb or another formation. This research proposes a new approach to identify the position and word function in Arabic sentence. The approach creates smart process that employs Natural Language Processing (NLP) and expert system with modeling based on knowledge and inference engine in determining the word position. The knowledge base determines the part of speech while the inference engine shows the word function in the sentence. On processing, the system uses 82 templates consisting of 34 verb templates, 34 subject pronouns, 14 pronouns for object or possessive word. All the templates are in the form of char array for harakat (vowel) and letters which become the comparators for determining the part of speech from input word sentence. Output from the system is an i’rab (the explanation of word function in sentence) written in Arabic. The system has been tested for 159 times to examine word and sentence. The examination for word that is done 117 times has not made any error except for the word that is really like another word. While the detection for word function in sentence that is done 42 times experiment, there is no error too. An error happens when the part of speech from the word being examined is not included in the system yet, influencing the following word function detection.Keywords: I’rab, Arabic grammar, NLP, expert system, knowledge base, inference engine
Automatic Representative News Generation using On-Line Clustering Marlisa Sigita; Ali Ridho Barakbah; Entin Martiana Kusumaningtyas; Idris Winarno
EMITTER International Journal of Engineering Technology Vol 1 No 1 (2013)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8313.353 KB) | DOI: 10.24003/emitter.v1i1.11

Abstract

The increasing number of online news provider has produced large volume of news every day. The large volume can bring drawback in consuming information efficiently because some news contain similar contents but they have different titles that may appear. This paper presents a new system for automatically generating representative news using on-line clustering. The system allows the clustering to be dynamic with the features of centroid update and new cluster creation. Text mining is implemented to extract the news contents. The representative news is obtained from the closest distance to each centroid that calculated using Euclidean distance. For experimental study, we implement our system to 460 news in Bahasa Indonesia. The experiment performed 70.9% of precision ratio. The error is mainly caused by imprecise results from keyword extraction that generates only one or two keywords for an article. The distribution of centroid’s keywords also affects the clustering results.Keywords: News Representation, On-line Clustering, Keyword Aggregation, Text Mining.
Reinforced Intrusion Detection Using Pursuit Reinforcement Competitive Learning Indah Yulia Prafitaning Tiyas; Ali Ridho Barakbah; Tri Harsono; Amang Sudarsono
EMITTER International Journal of Engineering Technology Vol 2 No 1 (2014)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (10388.993 KB) | DOI: 10.24003/emitter.v2i1.16

Abstract

Today, information technology is growing rapidly,all information can be obtainedmuch easier. It raises some new problems; one of them is unauthorized access to the system. We need a reliable network security system that is resistant to a variety of attacks against the system. Therefore, Intrusion Detection System (IDS) required to overcome the problems of intrusions. Many researches have been done on intrusion detection using classification methods. Classification methodshave high precision, but it takes efforts to determine an appropriate classification model to the classification problem. In this paper, we propose a new reinforced approach to detect intrusion with On-line Clustering using Reinforcement Learning. Reinforcement Learning is a new paradigm in machine learning which involves interaction with the environment.It works with reward and punishment mechanism to achieve solution. We apply the Reinforcement Learning to the intrusion detection problem with considering competitive learning using Pursuit Reinforcement Competitive Learning (PRCL). Based on the experimental result, PRCL can detect intrusions in real time with high accuracy (99.816% for DoS, 95.015% for Probe, 94.731% for R2L and 99.373% for U2R) and high speed (44 ms).The proposed approach can help network administrators to detect intrusion, so the computer network security systembecome reliable.Keywords: Intrusion Detection System, On-Line Clustering, Reinforcement Learning, Unsupervised Learning.
Centronit: Initial Centroid Designation Algorithm for K-Means Clustering Ali Ridho Barakbah; Kohei Arai
EMITTER International Journal of Engineering Technology Vol 2 No 1 (2014)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v2i1.17

Abstract

Clustering performance of the K-means highly depends on the correctness of initial centroids. Usually initial centroids for the K- means clustering are determined randomly so that the determined initial centers may cause to reach the nearest local minima, not the global optimum. In this paper, we propose an algorithm, called as Centronit, for designation of initial centroidoptimization of K-means clustering. The proposed algorithm is based on the calculation of the average distance of the nearest data inside region of the minimum distance. The initial centroids can be designated by the lowest average distance of each data. The minimum distance is set by calculating the average distance between the data. This method is also robust from outliers of data. The experimental results show effectiveness of the proposed method to improve the clustering results with the K-means clustering.Keywords: K-means clustering, initial centroids, Kmeansoptimization.
Co-Authors A.A. Ketut Agung Cahyawan W Abd. Rasyid Syamsuri Achmad Basuki Achmad Basuki Achmad Basuki Achmad Basuki Achmad Basuki Aditya Afgan Hermawan Adnan Rachmat Anom Besari Afifah, Izza Nur Afrida Helen Afrida Helen Afrida Helen, Afrida Agata, Dias Agus Kurniasari, Arvita Ahsan, Ahmad Syauqi Al Islami, M Tafaquh Fiddin Alde, Muhammad Riski Alfi Fadliana Amali, Darari Nur Amalia Wirdatul Hidayah Amalo, Elizabeth Anggraeni Amang Sudarsono, Amang Andhik Ampuh Yunanto Andy Yuniawan ANITA DAMAYANTI Anom Besari, Adnan Rachmat Arna Fariza Arvita Agus Kurniasari Arvita Agus Kurniasari Aziz, Adam Shidqul Bayu Dwiyan Satria Bima Sena Bayu Dewantara Budi Santosa Dadet Pramadihanto Dadet Pramadihanto Darari Nur Amali Desi Amirullah, Desi Desy Intan Permatasari, Desy Intan Devira Nanda Kuswhara Devira Nanda Kuswhara, Devira Nanda Dewanto, Raden Sanggar Dias Agata Edelani, Renovita Edi Satriyanto Edi Wahyu Widodo Entin Martiana Kusumaningtyas Fahrudin, Tresna Maulana Fauzi Nafi'Ubadah, Kriza Febrianto, Ardiansyah Indra Ferry Astika S Ferry Astika Saputra Galih Hendra Wibowo Haikal Yuniarta Krisgianto, Ricko Hamida, Silfiana Nur Hermawan, Aditya Afgan Hidayah, Amalia Wirdatul Hidayah, Nadila Wirdatul Hisyam, Masfu Huda, Achmad Thorikul I Made Akira Ivandio Agusta Idris Winarno Idris Winarno Ilham Iskandariansyah Indah Yulia Prafitaning Tiyas Indah Yulia Prafitaning Tiyas, Indah Yulia Prafitaning Indra Adji Sulistijono Insani, Fawzan Irene Erlyn Wina Rachmawan Irene Erlyn Wina Rachmawan Irene Erlyn Wina Rachmawan, Irene Erlyn Wina Irsal Shabirin Isbat Uzzin Nadhori, Isbat Uzzin iwan Syarif Iwan Syarif Kindarya, Fabyan Kohei Arai Kohei Arai Kohei Arai Kurniasari, Arvita Agus Kusuma, Dedy Hidayat Kusuma, Selvia Ferdiana Louis Nashih Uluwan Arif M Udin Harun Al Rasyid, M Udin Harun Mahardhika, Yesta Medya Marlisa Sigita Marlisa Sigita, Marlisa Masfu Hisyam Maulana, Wahyu Ikbal Mayangsari, Mustika Kurnia Mirza Ghulam Rifqi Mirza Ghulam Rifqi Mohammad Nur Shodiq Mohammad Nur Shodiq Mohammad Nur Shodiq Mohammad Nur Shodiq, Mohammad Nur Mu'arifin, Mu'arifin Muarifin . Muarifin ., Muarifin Muarifin Muarifin Muh Subhan Muhammad Alfian Muhammad Rois Muhammad Wahyu Nugroho Sakti Nadila Wirdatul Hidayah Nana Ramadijanti, Nana Ni'Ma, Najma Akmalina Nur Rosyid Mubatada'i Nur Rosyid Mubtadai Nur Rosyid Mubtadai, Nur Rosyid Oktavia Citra Resmi Rachmawati Piko Permata Ilham Prasetyo Primajaya, Grezio Arifiyan Puspasari Susanti Putra, Berlian Juliartha Martin Rachmawati, Oktavia Citra Resmi Rasyada, Ihda Ratri Cahyaning Winedhar Renovita Edelani Renovita Edelani Ridho, Bistiana Syafina Riyanto Sigit Riyanto Sigit, Riyanto Rizka Rahayu Sasmita Rudi Kurniawan S, Ferry Astika Sa'adah, Umi Saputra, Muhammad Krisnanda Vilovan Sesulihatien, Wahjoe Tjatur Setiawardhana Setiawardhana Setiawardhana, Setiawardhana Subhan, Muh Sumarsono, Irwan Suryani, Indah Yudi Susanti, Puspasari Susetyoko, Ronny Syd. Ali Zein Farmadi Syd. Ali Zein Farmadi, Syd. Ali Zein Tahta Alfina Taufan Radias Miko Tessy Badriyah Tessy Badriyah, Tessy Tita Karlita Tita Karlita Tresna Maulana Fahrudin Tresna Maulana Fahrudin Tri Hadiah Muliawati, Tri Hadiah Tri Harsono Tri Harsono ULURRASYADI, FAIZ Umam, Khotibul Wahjoe Tjatur Sesulihatien Wahjoe Tjatur Sesulihatien Wibowo, Galih Hendra Widodo, Edi Wahyu Wina Rachmawan, Irene Erlyn Yuliana Setiowati Yuliana Setiowati, Yuliana Zainal Arief