p-Index From 2021 - 2026
8.465
P-Index
This Author published in this journals
All Journal Jurnal Simetris Jurnal technoscientia Telematika : Jurnal Informatika dan Teknologi Informasi Seminar Nasional Informatika (SEMNASIF) Jurnal Sistem Informasi dan Bisnis Cerdas Register: Jurnal Ilmiah Teknologi Sistem Informasi Bianglala Informatika : Jurnal Komputer dan Informatika Akademi Bina Sarana Informatika Yogyakarta INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Indonesian Journal of Information System Jurnal Eksplora Informatika JMM (Jurnal Masyarakat Mandiri) JurTI (JURNAL TEKNOLOGI INFORMASI) Compiler CARADDE: Jurnal Pengabdian Kepada Masyarakat Voice Of Informatics Jurnal Teknologi Sistem Informasi dan Aplikasi Abdimas Umtas : Jurnal Pengabdian kepada Masyarakat JMAI (Jurnal Multimedia & Artificial Intelligence) JUSIM (Jurnal Sistem Informasi Musirawas) Antivirus : Jurnal Ilmiah Teknik Informatika Building of Informatics, Technology and Science Technologia: Jurnal Ilmiah Journal of Information Systems and Informatics Jurnal Sistem informasi dan informatika (SIMIKA) Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) JURNAL TEKNOLOGI TECHNOSCIENTIA Journal of Information Technology Ampera Journal of Computer and Information Systems Ampera Journal of Software Engineering Ampera Charity : Jurnal Pengabdian Masyarakat Prosiding SNAST Jurnal Pengabdian Masyarakat Indonesia Jurnal Ilmiah Teknologi Informasi dan Robotika Jurnal Abdi Masyarakat Indonesia International Journal Of Computer, Network Security and Information System (IJCONSIST) Jurnal Sains dan Teknologi Jurnal Pengabdian Mitra Masyarakat (JPMM) Journal of Computer Science and Technology (JCS-TECH) Journal Of Information System And Artificial Intelligence Jurnal Sistem Informasi dan Bisnis Cerdas Journal Research of Social Science, Economics, and Management SisInfo : Jurnal Sistem Informasi dan Informatika Innovative: Journal Of Social Science Research SENAPAS SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan International Journal of Artificial Intelligence and Science
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Information Technology Ampera

Implementasi Data Mining Pada Klasifikasi Status Gizi Bayi Dengan Metode Decision Tree CHAID (Studi Kasus: Puskesmas Godean 1 Yogyakarta) Lewoema, Scholastica Larissa Zefira; Prasetyaningrum, Putri Taqwa
Journal of Information Technology Ampera Vol. 5 No. 1 (2024): Journal of Information Technology Ampera
Publisher : APTIKOM SUMSEL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalita.v5i1.538

Abstract

Penelitian ini mengukur akurasi metode Decision Tree CHAID dalam mengklasifikasikan status gizi bayi dengan menambahkan atribut jenis kelamin dan lokasi desa posyandu. Hasil penelitian ini adalah situs web berbasis server lokal untuk menguji sistem klasifikasi tersebut. Prosesnya meliputi impor data, pembagian data latih dan uji, pelatihan model, pemilihan algoritma, dan pengujian matriks. Dari 3106 data antara Januari hingga Februari 2024, akurasi pada data uji mencapai 0,90, pada data latih 0,99, dan akurasi algoritma CHAID 0,84. Variabel yang digunakan meliputi usia, desa, posyandu, tinggi badan, berat badan, dan jenis kelamin. Kelas status gizi meliputi gizi baik, gizi buruk, gizi kurang, gizi berlebih, obesitas, dan risiko gizi berlebih. This research aims to measure the accuracy of the Decision Tree CHAID method in classifying the nutritional status of infants by adding new attributes such as gender and village posyandu location. The outcome of this research is a locally hosted website for testing the classification system using the CHAID-based Decision Tree method. The process includes data import, splitting data into training and testing sets, training the machine learning model, selecting the appropriate algorithm, and performing a confusion matrix test. From 3106 data entries collected between January and February 2024, the accuracy on the test data reached 0.90, on the training data 0.99, and the CHAID algorithm accuracy was 0.84. The variables used include age, village, posyandu, height, weight, and gender. The nutritional status classes used as labels in this study are good nutrition, malnutrition, undernutrition, overnutrition, obesity, and risk of overnutrition.
Klasifikasi Daun Teh Klon Seri GMB Menggunakan Convolutional Neural Network dengan Arsitektur VGG16 dan Xception Mukti, Alphi Rinaldi Nalendra; Prasetyaningrum, Putri Taqwa
Journal of Information Technology Ampera Vol. 5 No. 1 (2024): Journal of Information Technology Ampera
Publisher : APTIKOM SUMSEL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalita.v5i1.540

Abstract

Indonesia memiliki tingkat konsumsi teh tertinggi di dunia, di mana kualitas daun teh sangat bergantung pada lokasi tumbuhnya. Untuk mengidentifikasi jenis teh, sistem otomatisasi dengan pengolahan citra digital digunakan. Penelitian ini membandingkan dua arsitektur model yaitu dengan augmentasi data dan tanpa augmentasi dalam mengklasifikasikan daun teh klon seri GMB 1-5. Hasil penelitian menunjukkan bahwa model CNN tanpa augmentasi memberikan akurasi yang lebih tinggi dibandingkan dengan yang menerapkan augmentasi. Secara spesifik, model Xception tanpa augmentasi mencapai akurasi 98%, sedangkan VGG16 tanpa augmentasi mencapai 95%. Sebaliknya, model dengan augmentasi memperoleh akurasi 92% untuk Xception dan 94% untuk VGG16. Temuan ini menunjukkan bahwa, dalam konteks dataset terbatas, model tanpa augmentasi cenderung lebih akurat karena menghindari overfitting yang sering terjadi pada dataset kecil. Indonesia has the highest tea consumption rate in the world, where the quality of tea leaves is heavily dependent on their growing location. To identify tea types, an automation system using digital image processing is employed. This study compares two model architectures: one with data augmentation and one without, in classifying GMB 1-5 series tea leaves. The results indicate that the CNN model without augmentation achieved higher accuracy compared to the one with augmentation. Specifically, the Xception model without augmentation reached an accuracy of 98%, while VGG16 without augmentation achieved 95%. In contrast, the model with augmentation achieved 92% accuracy for Xception and 94% for VGG16. These findings suggest that, in the context of a limited dataset, models without augmentation tend to be more accurate as they avoid overfitting commonly encountered with small datasets.
Analisis Sentimen Terhadap Klinik Natasha Skincare di Yogyakarta Dengan Metode Google Review Rustiawan, Muhammad Rizqi Akfani; Prasetyaningrum, Putri Taqwa
Journal of Information Technology Ampera Vol. 5 No. 1 (2024): Journal of Information Technology Ampera
Publisher : APTIKOM SUMSEL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalita.v5i1.556

Abstract

Penelitian ini bertujuan menganalisis sentimen terhadap Klinik Natasha Skincare di Yogyakarta melalui ulasan Google Review. Data dikumpulkan dari ulasan pengguna yang mengunjungi klinik, dan analisis sentimen digunakan untuk mengevaluasi opini serta perasaan positif atau negatif dalam ulasan tersebut. Hasil analisis diharapkan membantu manajemen klinik memahami persepsi dan pengalaman pengguna, serta meningkatkan kualitas layanan. Penelitian ini juga menggunakan algoritma Support Vector Machine (SVM) untuk mengklasifikasikan sentimen ulasan, dengan tujuan memberikan wawasan mendalam tentang reputasi Klinik Natasha Skincare di Yogyakarta. This study aims to analyze sentiments towards Natasha Skincare Clinic in Yogyakarta through Google Reviews. Data was collected from reviews by users who visited the clinic, and sentiment analysis was used to evaluate the positive or negative opinions and feelings contained in these reviews. The results of this analysis are expected to help the clinic management understand user perceptions and experiences, and to improve the quality of services provided. This study also employs the Support Vector Machine (SVM) algorithm to classify the sentiments of the collected reviews, aiming to provide deeper insights into the reputation of Natasha Skincare Clinic in Yogyakarta.
Co-Authors Adi Ronggo Wicaksono Affandi Putra Pradana Agung Supoyo Agustin, Isnaini Ahmad Iwan Fadli Ahmad Mukhlasin Ahsan, Moh Ajisari, Lanang Dian Albert Yakobus Chandra Albert Yakobus Chandra Alphi Mukti Anggie Kurniawati Anggo Luthfi Yunanto Ari Wibowo Arita Witanti Aritonang, Roselina Artika Sari Arwa Ulayya Haspriyanti Ati, Gresensia Rosadelima Azzahra, Bernica Bagus Nur Solayman Bambang Setio Purnomo Bambang Setio Purnomo Budianto, Alexius Endy Cindy Okta Melinda Dapit Virdaus Denny Jean Cross Sihombing Devi Febrianti dewi, Ine shinta Dhana Sudana Eka Aryani, Eka Erza, Muhammad Al-Ghifari Fransiskus Xaverius Pere GUNARTATIK ESTHININGTYAS Hamam Nurrofiq Hasnidar Hasnidar Heri Agus Prasetyo Herin, Sofia Ibnu Rivansyah Subagyo Ibrahim, Norshahila Irfan Pratama Irya Wisnubhadra Julius Bata Jumiyati Juwita Juwita Karlina, Leni Khalifah Samiih Sya'bani Sya'bani Khoirut Tamimi Kris Rahayu Kristina Andryani Larasaty, Raditha Latifah, Retno Leni Karlina Lewoema, Scholastica Larissa Zefira luky kurniawan, luky M. Anjas Leonardi M. Irfan Bahri Mita Oktafani Mu'ti, Dewi Lestari Mukti, Alphi Rinaldi Nalendra Mutaqin Akbar Nadeak, Puja Waldi Nanda, Tietan Geovanka Ningsih, Rully Ningsih, Ruly Norshahila Ibrahim Nuning Rusmilawati Nur Sholehah Dian Saputri Nuri Budi Hangesti Nurul Tiara Kadir Okta, Sri Oktafani, Mita Ozzi Suria Ozzi Suria Ozzi Suria Pipin Yuliyanto Pratama, Bagus Wahyu Ari Pratama, Harfin Ibna Pratama, Irfan Puja Waldi Nadeak Puja Putra, Rio Aji Hadyanta Putry Wahyu Setyaningsih Rani Dwi Lestari Reny Yuniasanti Resi Dwi Febrianti Rias Ilham Agung Nugroho Rosita, Rani Rustiawan, Muhammad Rizqi Akfani saka, Hildegardis Kristina Santoso Pamungkas Sari, Artika Scholastica Lewoema Setiyani, Santi Setyaningsih, Putry Wahyu Simarmata, Penni Wintasari Subagyo, Ibnu Rivansyah Suria, Ozzi Suyoto Suyoto Viony Julianti Sipayung Wahyuningsih Wahyuningsih