Claim Missing Document
Check
Articles

The Utilization of Virtual Reality Technology for First Aid Learning in Vocational High School Nursing Students: English Widodo, Wahyu; Yosi Kristian
Journal of Information System,Graphics, Hospitality and Technology Vol. 7 No. 1 (2025): Journal of Information System, Graphics, Hospitality and Technology
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37823/insight.v7i1.385

Abstract

This VR application can be used to train nurses for future professional challenges they may face. The continuous development of VR applications enables trainees to effectively confront real-life simulations and experience increasingly concrete situations, which can be highly important in nursing education. The use of 3D visualization allows for study understanding of various activities and can help prevent potential errors in the future. Nursing education has always utilized simulation-based learning methods, which are widely recognized in nurse education. Skills laboratories have been established in recent years as a form of learning that provides skills and knowledge through repeated practice without requiring placement. This study discusses the utilization of virtual reality technology in first aid training. First aid training using VR technology is expected to increase the effectiveness of learning by at least 20%. The VR application for first aid learning consists of four first aid training modules, including treatment for burns, fractures, bleeding wounds, and breathing difficulties. This VR application was tested on students to determine whether it could improve the effectiveness of first aid learning. Based on the application testing using a respondent questionnaire, it was found that the assessment of knowledge enhancement in learning reached 72.08. Furthermore, this virtual reality application is more effective when used in first aid training, as evidenced by the superiority of the post-test scores of students who learned first aid using virtual reality compared to those who learned first aid without VR, which was 23.4%.
Optimized image-based grouping of e-commerce products using deep hierarchical clustering Pranoto, Yuliana Melita; Handayani, Anik Nur; Herwanto, Heru Wahyu; Kristian, Yosi
International Journal of Advances in Intelligent Informatics Vol 11, No 3 (2025): August 2025
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v11i3.1979

Abstract

Managing large and constantly evolving product catalogs is a significant challenge for e-commerce platforms, especially when visually similar products cannot be reliably distinguished using text-based methods. This study proposes a product grouping method that combines a fine-tuned EfficientNetV2M model with an adaptive Agglomerative Clustering strategy. Unlike conventional CNN-based approaches, which have limited scalability and a fixed number of clusters, the proposed method dynamically adjusts similarity thresholds and automatically forms clusters for unseen product variations. By linking deep visual feature extraction with adaptive clustering, the method enhances flexibility in handling product diversity. Experiments on the Shopee product image dataset show that it achieves a high Normalized Mutual Information (NMI) score of 0.924, outperforming standard baselines. These results demonstrate the method’s effectiveness in automating catalog organization and offer a scalable solution for inventory management and personalized recommendations in e-commerce platforms.
Clustering dan Visualisasi Data ASN dalam Penunjang Analisis Kecukupan Data di Perangkat Daerah Pemerintah Provinsi Jawa Timur Wikjatmiko, Zhulfi Bajra; Endang Setyati; Yosi Kristian
Joutica Vol 10 No 2 (2025): SEPTEMBER
Publisher : Universitas Islam Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30736/jti.v10i2.1440

Abstract

Penelitian ini mengimplementasikan K-Means, Gaussian Mixture Model (GMM), dan Hierarchical Clustering untuk menganalisis kecukupan data 18.962 ASN Pemerintah Provinsi Jawa Timur dari 232 unit kerja di 38 wilayah administratif. Dataset terdiri dari 8 jenis perangkat daerah dengan Satpol PP (7.231 ASN) dan UPT (6.961 ASN) sebagai kontributor terbesar. Variabel clustering mencakup 12 atribut kelengkapan dokumen kepegawaian dalam format biner: foto ½ badan, foto full body, akta lahir, KTP, NPWP, sumpah jabatan PNS, nota BKN, SPMT, kartu ASN virtual, nomor NPWP, nomor BPJS, dan nomor KK. Metodologi penelitian meliputi preprocessing data dengan normalisasi Min-Max, penghapusan 287 duplikat, dan encoding biner. Metode Elbow menghasilkan cluster optimal k=7 untuk K-Means (distortion score 119.496), k=4 untuk GMM (BIC 119.839), dan k=3 untuk Hierarchical Clustering. Evaluasi menggunakan Silhouette Score, Calinski-Harabasz Index, dan Davies-Bouldin Index menunjukkan K-Means memiliki performa terbaik (0.332, 3412.783, 1.224). K-Means mengidentifikasi 35% ASN kategori High (>80%), 45% Medium (70-79%), dan 20% Low (<70%). GMM menghasilkan distribusi 40% High, 55% Medium, 5% Low plus 14 outlier. Hierarchical Clustering menghasilkan 52% High, 47% Medium, 1% Low. Temuan menunjukkan unit kerja Surabaya memiliki kelengkapan tertinggi (54.27%) dibanding kabupaten lain (<5%). PNS memiliki kelengkapan 90% lebih baik dari PPPK/CPNS. Kartu ASN Virtual dan Nomor KK merupakan dokumen dengan kelengkapan terendah (<40%). Visualisasi melalui dashboard interaktif, heatmap, scatter plot PCA, dan dendrogram memfasilitasi identifikasi prioritas pembenahan data. Model ini dapat diadaptasi untuk mendukung transformasi digital birokrasi di instansi pemerintah lainnya.