Claim Missing Document
Check
Articles

Model CNN Lenet Dalam Pengenalan Jenis Golongan Kendaraan Pada Jalan Tol Anggay Luri Pramana; Endang Setyati; Yosi Kristian
Jurnal Teknika Vol 12, No 2 (2020): Jurnal Teknika
Publisher : Universitas Islam Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30736/jt.v13i2.469

Abstract

Research in the field of transportation, especially vehicle classification with various methods, is a widely developed field of study. Vehicles can be categorized by shape, dimension, logo, and  type. The vehicle dataset is also not difficult to find because it is general in nature. Based on the research that has been done, the introduction of group types based on the number of axles with CNN, the dataset is not yet available to the public. In this paper, we discuss the introduction of the types of groups using the Convolutional Neural Network method. The architecture used is the LeNet model. The trial scenario is carried out in 4 stages, namely 25 epochs, 50 epochs, 75 epochs and 100 epochs. Based on the test results, the accuracy obtained continues to increase at 50 epochs and 100 epochs iterations. Starting from an accuracy of 82%, 94% to the highest accuracy of 95%. Likewise in the prediction the data has increased from 80%, 85% to the highest accuracy that can be 86%. From 50 epochs to 75 epochs, the accuracy of both training and testing has decreased.
Aspect based Sentiment Analysis Aduan Mahasiswa UMSIDA Dimasa Pandemi Menggunakan LSTM Bayu Anggara Putra; Yosi Kristian; Esther Irawati Setiawan; Joan Santoso
Intelligent System and Computation Vol 4 No 1 (2022): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v4i1.229

Abstract

Banyaknya data aduan Mahasiswa Universitas Muhammadiyah Sidoarjo (UMSIDA) yang terdampak wabah pandemi Covid19, dengan pemberlakuan pembatasan kegiatan masyarakat (PPKM). UMSIDA membentuk sebuah tim yang diberi nama Umsida Covid-19 Command Center (UCCC), dengan tujuan pelaksanaan program pecegahan dan aksi penanganan Covid-19, dengan harapan peneliti ingin mempermudah penyampaian informasi / aduan mahasiswa, khususnya terhadap tim UCCC sebagai bahan pertimbangan dalam melakukan suatu keputusan untuk menghadapi pandemi covid saat ini. Multi aspect sentiment analysis menghadirkan sesuatu yang baru, untuk memahami pendapat dan penilaian pengguna yang diungkapkan secara online. Dengan tujuan untuk mengklasifikasikan teks subjektif dengan memberi label polaritas, Pembentukan representasi vektor kata menggunakan Word Embedding Global Vector (Glove) dilakukan secara kombinasi dengan pelatihan analisis sentiment dengan klasifikasi berbasis Long Short Term Memory (LSTM). Pemodelan aduan mahasiswa dilakukan untuk mendapatkan representasi vektor menggunakan LSTM. Di sini, setiap kata dari kalimat menempati satu langkah pemrosesan LSTM, dan output dari kata terakhir digunakan sebagai ekspresi kalimat. Hasil dari penelitian menggunakan aduan mahasiswa bahasa Indonesia menunjukkan dari multi 3 aspect (ekonomi, pendidikan dan kesehatan) mendapatkan akurasi 82% dan 2 sentiment (positif dan negatif) mendapatkan akurasi 80% dengan demikian didapatkan nilai rata-rata Akurasi 81%. dapat disimpulkan akurasi tersebut bisa digunakan sebagai klasifikasi multi aspect dan sentiment analisis.
Pengenalan Makanan Tradisional Indonesia Beserta Bahan-bahannya dengan Memanfaatkan DCNN Transfer Learning Citra Mahaputri; Yosi Kristian; Endang Setyati
Intelligent System and Computation Vol 4 No 2 (2022): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v4i2.252

Abstract

Pengenalan makanan adalah langkah awal untuk melakukan penilaian diet seseorang. Dalam pengenalan makanan beserta bahan-bahannya, dirasakan kurang diseminasi foto-foto makanan tradisional Indonesia, sehingga peneliti terdorong untuk melakukan penelitian mengenai pengenalan makanan tradisional Indonesia. Peneliti membuat klasifikasi citra makanan yang inputannya merupakan citra makanan tradisional Indonesia. Ekstraksi fitur citra makanan sulit untuk diklasifikasikan karena citra makanan beraneka ragam penampilannya, termasuk tekstur, warna, bentuk dan karakteristik visual lainnya. Penelitian ini meneliti pemanfaatan Deep Convolutional Neural Network (DCNN) model EfficientNetB6 dan EfficientNetV2M untuk pengenalan makanan tradisional Indonesia beserta bahan-bahannya. DCNN merupakan metode yang biasa digunakan untuk mendeteksi citra yang komplek. Peneliti mengumpulkan citra makanan tradisional Indonesia secara manual sebanyak 1.202 citra makanan yang berbeda. Terdiri dari 20 jenis makanan tradisional Indonesia. Masing-masing jenis makanan terdapat 50-80 gambar makanan. Data yang digunakan untuk uji klasifikasi makanan adalah 241 data citra makanan di luar data yang digunakan untuk training dan mendapatkan akurasi 83,82% untuk model EfficientNetV2M dan 80,08% untuk model EfficientNetB6. Kemudian pada proses pengujian dalam memprediksi bahan-bahan makanan yang terlihat pada gambar rata-rata mendapatkan 64% untuk model EfficienNetV2M dan 59% untuk model EfficeintNetB6. Berdasarkan hasil penelitian menunjukkan bahwa metode DCNN dengan model EfficientNetV2M dapat mencapai performa terbaik dari model EfficientNetB6.
Model CNN Lenet Dalam Pengenalan Jenis Golongan Kendaraan Pada Jalan Tol Anggay Luri Pramana; Endang Setyati; Yosi Kristian
Jurnal Teknika Vol 12 No 2 (2020): Jurnal Teknika
Publisher : Universitas Islam Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30736/jt.v13i2.469

Abstract

Research in the field of transportation, especially vehicle classification with various methods, is a widely developed field of study. Vehicles can be categorized by shape, dimension, logo, and  type. The vehicle dataset is also not difficult to find because it is general in nature. Based on the research that has been done, the introduction of group types based on the number of axles with CNN, the dataset is not yet available to the public. In this paper, we discuss the introduction of the types of groups using the Convolutional Neural Network method. The architecture used is the LeNet model. The trial scenario is carried out in 4 stages, namely 25 epochs, 50 epochs, 75 epochs and 100 epochs. Based on the test results, the accuracy obtained continues to increase at 50 epochs and 100 epochs iterations. Starting from an accuracy of 82%, 94% to the highest accuracy of 95%. Likewise in the prediction the data has increased from 80%, 85% to the highest accuracy that can be 86%. From 50 epochs to 75 epochs, the accuracy of both training and testing has decreased.
Pemilihan Kata Benda Bahasa Indonesia Berdasarkan Cakupan Suku Kata Menggunakan Genetic Algoritma untuk Dataset Audio Visual Eka Rahayu Setyaningsih; Anik Nur Handayani; Wahyu Sakti Gunawan Irianto; Yosi Kristian
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 9, No 1 (2023): Volume 9 No 1
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v9i1.63970

Abstract

Dalam pembentukan model Kecerdasan Buatan yang menggunakan pendekatan Deep Learning, dataset memegang peranan yang sangat penting. Memahami dan memilih kumpulan data yang tepat, sangatlah penting untuk memastikan keberhasilan sebuah model Kecerdasan Buatan. Salah satu topik yang cukup baru adalah mempelajari bagaimana pembentukan suara dari hasil pembacaan gerakan bibir manusia, dengan cakupan variasi bunyi dan bentuk bibir yang diharapkan dapat membantu pembelajaran sistem. Mayoritas dataset audio visual, yang biasa digunakan untuk pembangunan model pembentukan suara ataupun pembacaan gerakan bibir tidak memperhatikan keluasan cakupan variasi bunyi yang ada. AVID, salah satu dari dataset audio visual berbahasa Indonesia, mengadopsi susunan kata dalam dataset GRID, yang mengubah setiap kata penyusunnya dari Bahasa Inggris ke bahasa Indonesia. Sedangkan pada Bahasa Indonesia sendiri terdapat banyak ragam bunyi yang dibentuk dari satu atau sederet rangkaian fonem. Penelitian yang dilakukan penulis dengan memanfaatkan Genetic Algorithm untuk mendapatkan susunan kombinasi kata benda guna memperoleh nilai cakupan yang optimal. Dengan cakupan kombinasi suku kata yang lebih baik, maka dapat dihasilkan dataset untuk Deep Learning yang lebih baik lagi. Dalam penelitian ini, kata benda yang diproses, diperoleh dari KBBI edisi 2008, baru kemudian difilter untuk mendapatkan kata benda yang tepat mengandung 3 suku kata, yang bukan nama kota, tokoh maupun lokasi. Dari 39.070 kata benda yang ada, diperoleh 2936 kata benda yang akan digunakan. Ujicoba yang telah dilakukan pada 10.000 hingga 200.000 epoch, diperoleh rata-rata cakupan suku kata 72%-75% dengan batasan 26 variasi kata benda penyusunnya.
Pengenalan Varietas Ikan Koi Berdasarkan Foto Menggunakan Simple Linear Iterative Clustering Superpixel Segmentation dan Convolutional Neural Andy Hermawan; Ilham Zaeni; Aji Wibawa; Gunawan Gunawan; Yosi Kristian; Shandy Darmawan
Jurnal Inovasi Teknologi dan Edukasi Teknik Vol. 1 No. 11 (2021)
Publisher : Universitas Ngeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (533.052 KB)

Abstract

Object segmentation and image recognition are two computer vision tasks which are still being developed until today. Simple Linear Iterative Clustering is an algorithm which is very popular to help with object segmentation tasks because it is the best in terms of result and speed. In image recognition, Convolutional Neural Networks are also one of the best approaches for any kind of recognition tasks because of their efficiency and the ability to recognize objects like animals do. Koi fish have become a very interesting object to be researched because they are difficult to segment and distinguished between their varieties. The dataset consists of 600 images of Koi fish from 10 different varieties. The Koi fish’s recognition process begins with generating super pixels for the input image. The next step is to merge all neighborhood super pixels by their color similarities. After this step, almost all the background pixels should be detected so that the actual object, the Koi fish, can be segmented. The segmented image is then given to a Convolutional Neural Networks, to learn any important features which distinguish every Koi fish variety from one another. A trained Convolutional Neural Networks can then give a Koi fish variety prediction for an input image. Based on a series of segmentation and model tests performed, it is proven that the segmentation technique, which uses Simple Linear Iterative Clustering in this project, performs exceptionally well across almost all the images in the dataset. The model produced from this project is also able to classify a wide range of Koi fish varieties accurately at 90 percent accuracy with segmentation and 87 percent without segmentation. Segmentasi dan pengenalan objek pada gambar masih merupakan dua buah masalah pada computer vision yang masih terus diteliti dan dikembangkan hingga saat ini. Simple Linear Iterative Clustering merupakan salah satu algoritma segmentasi superpixel yang cukup populer untuk membantu melakukan segmentasi objek karena memiliki hasil superpixel yang baik dan dapat berjalan dengan cepat. Untuk pengenalan objek, Convolutional Neural Networks masih merupakan salah satu yang terbaik untuk berbagai masalah karena efisien dan mampu mengenali objek pada gambar layaknya hewan mengenali objek yang dilihatnya. Ikan koi menjadi sebuah objek yang menarik untuk diteliti karena sulit untuk disegmentasi dan dikenali jenisnya bahkan oleh manusia. Dataset yang digunakan berisi 600 gambar yang terdiri dari 10 varietas ikan koi. Pengenalan ikan koi diawali dengan melakukan generate superpixel pada gambar input, kemudian menggabungkan superpixel-superpixel terdekat yang memiliki warna yang mirip. Dengan cara ini, maka hampir seluruh pixel background dapat dideteksi sehingga objek ikan koi dapat disegmentasi. Gambar hasil segmentasi kemudian dilatihkan ke Convolutional Neural Networks yang akan mempelajari fitur-fitur penting pada setiap jenis ikan koi yang diteliti. Convolutional Neural Networks yang telah dilatih kemudian dapat memberikan prediksi varietas ikan koi dari sebuah input gambar. Berdasarkan hasil uji coba segmentasi dan model yang digunakan, dibuktikan bahwa teknik segmentasi yang memanfaatkan Simple Linear Iterative Clustering yang dilakukan berhasil untuk hampir seluruh gambar pada dataset. Model yang dibuat mampu mengklasifikasikan varietas ikan koi dengan akurasi 90 persen dengan segmentasi dan 87 persen tanpa segmentasi.
Klasifikasi Penyakit Tanaman Cabai Rawit Dilengkapi Dengan Segmentasi Citra Daun dan Buah Menggunakan Yolo v7 Masrur Anwar; Yosi Kristian; Endang Setyati
INTECOMS: Journal of Information Technology and Computer Science Vol 6 No 1 (2023): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v6i1.6071

Abstract

Diseases that attack chili plants can be diagnosed early by observing symptoms or changes that occur in the leaves and fruit of the chili plant. However, diseases or pests that attack chili plants within a single plant can vary. In this study, YOLO v7 was used to perform leaf and chili segmentation on images, and the segmented results were then classified for chili plant disease using Deep Convolutional Neural Network (DCNN) Transfer Learning with the Fine Tuning method. The test results of the constructed model showed that the Yolo v7 segmentation accuracy was 0.970 on mAP50 when performing chili plant leaf and fruit segmentation. For the DCNN model testing with transfer learning method using the EfficientNetV2M based model, an accuracy value of 0.912 was obtained for leaf disease classification and an accuracy of 0.889 was obtained for chili fruit classification. Keyword: Chili Plant Diseases; Classification; Transfer Learning, Yolo v7 segmentation
System of gender identification and age estimation from radiography: a review Nur Nafi’iyah; Chastine Fatichah; Darlis Herumurti; Eha Renwi Astuti; Ramadhan Hardani Putra; Esa Prakasa; Yosi Kristian
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5491-5500

Abstract

Under extreme conditions postmortem, dental radiography examinations can play an essential role in individual identification. In forensic odontology, individual identification traditionally compares antemortem dental records radiographs with those obtained on postmortem examination. As such, these traditional methods are vulnerable to oversights or mistakes in the individual identification of unidentified bodies. Digital technology can develop forensic odontology well. An automatic individual identification system is needed to support the forensic odontology process more easily and quickly because there are still opportunities to be created. We aimed to review the complete range of recent developments in identifying individuals from panoramic radiographs. We study methods in gender identification, age estimation, radiographic segmentation, performance analysis, and promising future directions.
Single Objective Mayfly Algorithm with Balancing Parameter for Multiple Traveling Salesman Problem YOGA DWI WAHYU NUGRAHA; HENDRAWAN ARMANTO; YOSI KRISTIAN
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 3 (2023): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeemi.v5i3.299

Abstract

The Multiple Travelling Salesman Problem (MTSP) is a challenging combinatorial problem that involves multiple salesman visiting a set of cities, each exactly once, starting and ending at the same depot. The aim is to determine the optimal route with minimal cost and node cuts for each salesman while ensuring that at least one salesman visits each city. As the problem is NP-Hard, a single-objective metaheuristic algorithm, called the Mayfly Algorithm, inspired by the collective behavior of mayflies, is employed to solve the problem using the TSPlib95 test data. Since the Mayfly Algorithm employs a single fitness function, a balancing parameter is added to perform multiobjective optimization. Three balancing parameters in the optimization process: SumRoute represents the total cost of all salesmen travelling, StdRoute balances each salesman cost, and StdNodes balances the number of nodes for each salesman. The values of these parameters are determined based on the results of various tests, as they significantly impact the MTSP optimization process. With the appropriate parameter values, the single-objective Mayfly Algorithm can produce optimal solutions and avoid premature convergence. Overall, the Mayfly Algorithm shows promise as a practical approach to solving the MTSP problem. Using multiobjective optimization with balancing parameters enables the algorithm to achieve optimal results and avoid convergence issues. The TSPlib95 dataset provides a robust testing ground for evaluating the algorithm’s effectiveness, demonstrating its ability to solve MTSP effectively with multiple salesman.
Pemanfaatan Deep Learning pada Video Dash Cam untuk Deteksi Pengendara Sepeda Motor Stephen Ekaputra Limantoro; Yosi Kristian; Devi Dwi Purwanto
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 7 No 2: Mei 2018
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1738.3 KB)

Abstract

The number of motorcyclists in Indonesia was 105.15 million in 2016. It made the Indonesian government difficult to monitor motorcyclists on the highways. Dash cam could be used as the alternative tool to detect motorcyclists when given the intelligence. One of the typical drawbacks in detecting objects is complex and varied feature. A convolutional neural networks (CNN) that was capable of detecting motorcyclists was proposed. CNN successfully classified the ship object with f1-score of 0.94. Sliding window and heat map were used in thispaper to search the localization and region of motorcyclists. Two experiments had been done in this paper. The goal of this paper was to set the best combination of CNN architecture and parameter. The first experiment consisted of three trained weights while the second experiment consisted of one trained weight. Weight peformances against test data in experiment 1 and experiment 2 were measured using f1-score of 0.977, 0.988, 0.989, and 0.986, respectively. From the experimental results using the sliding window, experiment 2 had a lower error rate to predict motorcyclists than experiment 1 because the training data on experiment 1 contained more and various images.