Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Creative Information Technology Journal

Self Organizing Map-Neural Network untuk Pengelompokan Abstrak Fajar Rohman Hariri; Danar Putra Pamungkas
Creative Information Technology Journal Vol 3, No 2 (2016): Februari - April
Publisher : UNIVERSITAS AMIKOM YOGYAKARTA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (391.122 KB) | DOI: 10.24076/citec.2016v3i2.74

Abstract

Data berukuran besar yang sudah disimpan jarang digunakan secara optimal karena kemampuan manusia yang terbatas untuk mengelolanya. Salah satu data berskala besar adalah data teks. Data teks memiliki fitur yang besar sehingga untuk mengolahnya memerlukan waktu komputasi yang besar pula. Proses clustering menggunakan metode Self Organizing Map dengan menerapkan reduksi dimensi pada tahap preprosesing. Metode ini diterapkan untuk mengelompokkan data tugas akhir mahasiswa Teknik Informatika Universitas Trunojoyo Madura. Dalam metode yang diusulkan, analisis morfologi dilakukan pada teks abstrak tugas akhir mahasiswa untuk menghasilkan vektor input dengan unsur term dari tugas akhir tersebut. Dari percobaan yang dilakukan, diperoleh hasil bahwa optimum cluster menghasilkan nilai rata-rata SSE = 0.01117.Large data that is stored used rarely optimally because of the limited human ability to manage it. One of large-scale data is text data. Text data has enormous features so as to process it requires greater computational time. Clustering process using Self Organizing Map by applying dimensionality reduction on preprocessing. This method is applied to cluster the Informatics Engineering students' final assignment data of Trunojoyo University. In the proposed method, morphological analysis is applied on the abstract of final assignment to generate input vectors using elements of the final assignment. From the experiments conducted, the result that the best cluster to abstract data, average value of SSE = 0.01117.
Komparasi Pengenalan Citra Tanda Tangan dengan Metode 2D-PCA dan 2D-LDA Danar Putra Pamungkas; Ema Utami; Armadyah Amborowati
Creative Information Technology Journal Vol 2, No 4 (2015): Agustus - Oktober
Publisher : UNIVERSITAS AMIKOM YOGYAKARTA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (911.129 KB) | DOI: 10.24076/citec.2015v2i4.60

Abstract

Pada umumnya pengenalan tanda tangan dilakukan secara manual oleh seseorang dengan mencocokan secara langsung tanda tangan yang sah dengan tanda tangan yang dilakukan pada saat itu. Namun cara tersebut memiliki kelemahan karena membutuhkan ketelitian pada saat mencocokan. Oleh karena itu proses pencocokan tanda tangan perlu dilakukan secara otomastis dengan sistem komputer sehingga diharapkan mempermudah dalam identifikasi tanda tangan seseorang. Pada penelitian ini peneliti membandingkan metode 2DPCA dengan 2DLDA untuk mengetahui akurasi dan kecepatan proses pengenalan tanda tangan. Metode Euclidean Distance digunakan untuk mencari kemiripan data tanda tangan. Data citra tanda tangan yang digunakan terdiri dari enam jenis kondisi yaitu kertas putih polos, kertas bercorak papyrus, bercorak shingle, tanda tangan miring dan dari eKTP. Dari hasil ujicoba tingkat akurasi pengenalan citra tanda tangan menggunakan metode 2DPCA yaitu rata-rata 78.27% dan metode 2DLDA rata-rata 74.33%. Kecepatan proses pengenalan citra tanda tangan menggunakan metode 2DPCA rata-rata 0.2605504 detik sedangkan menggunakan metode 2DLDA rata-rata 0.2401697 detik.In general, the introduction of the signature is done manually by someone with matching directly authorized signature with the signature done at that time. But this way has the disadvantage because it requires precision when matching. Therefore the signature matching process needs to be done in automatically by the computer system so hopefully facilitate the identification of a person's signature. In this study, researchers compared with 2DLDA and 2DPCA method to determine the accuracy and speed of signature recognition process. Euclidean Distance method is used to find the similarity signature data. Signature image data used consisted of six types of conditions that plain white paper, papyrus patterned paper, patterned shingles, oblique and signature of eKTP. The accuracy of the test results signature image recognition using 2DPCA method which is an average 78.27% and the average 2DLDA method of 74.33%. Speed signature image recognition process using the average 2DPCA 0.2605504 seconds while using the average 2DLDA 0.2401697 seconds.
Pengenalan Citra Tanda Tangan Menggunakan Metode 2D-LDA dan Euclidean Distance Danar Putra Pamungkas; Fajar Rohman Hariri
Creative Information Technology Journal Vol 3, No 4 (2016): Agustus - Oktober
Publisher : UNIVERSITAS AMIKOM YOGYAKARTA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (635.272 KB) | DOI: 10.24076/citec.2016v3i4.83

Abstract

Kelemahan sistem manual dalam identifikasi tanda tangan adalah si pemeriksa tanda tangan harus teliti dalam melakukan pencocokan untuk menghindari kesalahan. Oleh karena itu untuk mengatasi kelemahan pencocokan tanda tangan secara manual, proses pencocokan tanda tangan perlu dilakukan secara otomastis dengan sistem komputer sehingga diharapkan mempermudah dalam identifikasi tanda tangan seseorang. Pada penelitian ini peneliti menggunakan metode 2DLDA dan Euclidean Distance untuk pengenalan tanda tangan dengan sistem komputer. Metode 2DLDA untuk ektraksi fitur citra tanda tangan dan metode Euclidean Distance untuk klasifikasi citra tanda tangan. Data citra tanda tangan yang digunakan berukuran 50x50, 100x100, 150x150, 200x200 dan 250x250 piksel. Hasil dari uji coba penelitian ini adalah akurasi pengenalan citra tanda tangan menggunakan metode 2DLDA mencapai 88% dan rata-rata akurasi 81%. Akurasi optimal pengenalan citra tanda tangan dengan metode 2DLDA terjadi pada penggunaan data citra berukuran 50x50 piksel dengan akurasi 88% dan kecepatan 0.20126 detik.The manual system in the identification of the examiner's signature is the signature must be meticulous in doing matching to avoid mistakes. Therefore, to overcome the disadvantages of signature matching manually, signature matching process needs to be done should automatically with a computer system that is expected to facilitate the identification of a person's signature. In this study, researchers used a method 2DLDA and Euclidean Distance to the introduction of a signature with a computer system. 2DLDA methods to extract image features the signature and Euclidean Distance method for image classification signature. The image data signature used measuring 50x50, 100x100, 150x150, 200x200 and 250x250 pixels. The results of this research trial is a signature image recognition accuracy using 2DLDA reaches 88% and an average accuracy of 81%. Optimum accuracy signature image recognition method 2DLDA occurs in the use of image data size of 50x50 pixels with 88% accuracy and speed 0.20126 seconds
Co-Authors Abdul Azis Achmad Fachrudi, Rafi Ahmad Bagus Setiawan Alfiantama, Ilham Alghozali, Muhammad Attiqi Amrulloh, M. Farij Andriawan, Riko Anggi Nur Fadzila Aprilia, Tri Krisna Wati Arafat, Filach Akbar Ardhi Mardiyanto Indra Purnomo, Ardhi Mardiyanto Indra Ardi Sanjaya Ardiansyah, Abdul Riqza Arfani, A. Rifqi Yarzuq Armadyah Amborowati Audianingrum, Arike Septi Aziz, Ahmad Minanul Baehaqie, Lu'ay Bagus Nugraha, Bagus Bayu Wijayanto Budi Darmawan Cahyono, Eko Nur Candra, Gea Vista Yulia Danang Wahyu Widodo Daniel Swanjaya Deni Wahyu Trisdianto Dewi Kurnia Sari Ema Utami Fajar Rohman Hariri Fajar, Indra Aditya Fatahna, Inna Fauziyah, Laili Rahma Febrianto, Yahya Eko Firdaus, Afrizal Ahmad Firmansyah Mukti Wijaya Fitriana, Dwi Fitriyana, Wahyu Tia Gusti, Fadzilah Prayoganing Haika, Dwi Fikri hamzah, saiful Heffi Awang Cahya Imam Wicaksono Joko Purwanto Kresnawan, Michael Ilham Kristantio, Triyo Kumalasari , Ratih Kurniawan, Taufik Rizki Machfudin, Imam Mahardika, Tanggon Maulana Mahdiyah, Umi Ma’arif, A’an Tamim MUCHAMMAD YOHAN EKA ANDREANE Mudjiono, Stifen Zuro Murhatiningtyas, Yulia Mustofa, Hasan Bisri Muwafiq, Atho’ul Nugroho, Wahyu Rahman Listiyanto Nuryanto Nuryanto Pamungkas, Danar Puta Pangestu, Mohamad Inung Patmi Kasih Prahesta, Hadi Rizky Dwi Via Prahesta Prakosa, Ade Novit Dedey Prastya, Damar Zanuar Eka Pratama, Nando Adi Tya Prayoga, Ryan Sea Prayogo, M. Renhat Ade Rabiatul Adawiyah Ratih Kumalasari Niswatin Restuning Pamuji, M Anas Resty Wulanningrum Risa Helilintar Risky Aswi R, Risky Rizky Prasetyo, Aprisa RIZQI VIERI, MUHAMMAD ARIEL Rochana, Siti Rohmah, Anis Nur Rohman, Agus Nur Salis Nilam Amartama Saputra, Avif Bayu Saputra, Muh. Aris Shodiq, Muchamad Fajar Sholih, Faris Ashofi Sholih, Faris Ashofi Sidqika, Trinanda Majid Cipta suara, Andy Subekti, Lutfi SUCININGRUM, DYA AYU Sukardi, Bayu Adjirahman Syahrudin, Erwin Tri Setiawan, Didik Triprasetyo, Anggi Wahyu Wulaningrum, Resty Yulingga Nanda Hanief Yuningsih, Yayuk Yusuf, Ibram Farhani Zainuri, Mohamad Zuhal, Nadya Khalisah