Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Infinity

PEMBELAJARAN MATEMATIKA MENGGUNAKAN PENDEKATAN PROBLEM POSING BERBASIS KOMPUTER PADA SISWA SMA KELAS X Muhammad Win Afgani; Bagus Ardi Saputro; Jero Budi Darmayasa
Jurnal Infinity Vol 5 No 1 (2016): Jurnal Infinity Vol 5 No 1 Februari 2016
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/infinity.v5i1.p32-41

Abstract

Penelitian ini bertujuan untuk mengetahui bagaimana untuk menghasilkan materi pembelajaran matematika problem possing berbasis komputer dan untuk mengetahui bagaimana kuantitas dan kualitas pertanyaan siswa dari masalah pendekatan problem possing berbasis komputer. Pertanyaan dan respon siswa dikumpulkan dari 35 siswa kelas satu SMA di Bandung. Data dianalisis dengan deskriptif dengan menggunakan rubrik Leung dan taksonomi Bloom. Untuk menghasilkan materi problem posing berbasis komputer, pertama, guru harus memilih konsep yang diharapkan dapat mengembangkan kemampuan siswa. Setelah itu, guru mencari konteks yang sesuai dengan konsep. Setelah konteks yang dipilih dan cocok tersebut, guru harus memilih software untuk melakukan ide dalam bentuk yang dinamis. Hasil penelitian ini menunjukkan bahwa dari 240 pertanyaan yang diberikan oleh siswa, hanya 35% yang masuk akal dan cukup masalah matematika. Dari 35% pertanyaan tersebut menunjukkan bahwa 75% siswa di tingkat pemahaman berdasarkan Bloom taksonomi. Dari 75% siswa yang merespon tersebut menunjukkan bahwa mereka senang terhadap materi yang menggunakan pendekatan problem possing matematika berbasis komputer.  This study aims to know how to produce mathematics problem posing material based on computer and to know how the quantity and quality of students’ question from mathematics problem posing based on computer. Students’ questions and respond is collected from 35 first grade students of senior high school in Bandung. The data is analysed with descriptively by using Leung’s rubric and Bloom taxonomy. To produce problem posing material based on computer, first, teacher must choose a concept that wish to be gifted to students. After that, the teacher searchs a context that according to the concept. After the context is selected and match with it, the teacher must choose a software to perform the idea in dynamic form. The result of this study shows that there is 240 questions that pose by students, only 35% is plausible and sufficient mathematics problem. From 35% questions, it shows that 75% students is in understanding level based on Bloom taxonomy. From the questioner, 75% students’ respond shows that they are happy toward material presentation by mathematics problem posing approach based on computer.
ONTOLOGICAL MISCONCEPTION IN MATHEMATICS TEACHING IN ELEMENTARY SCHOOLS Imam Kusmaryono; Mochamad Abdul Basir; Bagus Ardi Saputro
Jurnal Infinity Vol 9 No 1 (2020): Volume 9, Number 1, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/infinity.v9i1.p15-30

Abstract

Elementary school teachers in Indonesia are required to master many subjects to be taught to their students. It is undeniable that the teachers’ mastery of knowledge (material) in some subjects inadequate. Therefore, it is worth to argue that there was a misconception in mathematics teaching in elementary schools. This research was designed using a qualitative approach. The participants of this study were 30 elementary school teachers in Semarang city area, Central Java province, Indonesia. The research data were obtained through questionnaires, and interviews. The purpose of the study was to discuss the types and causes of the misconception of mathematics teaching in elementary schools. Alternative solutions were also presented to problem-solving so that misconceptions do not occur anymore in mathematics teaching. The findings show that, teachers evenly experience types of misconceptions: (1) pre-conception, (2) under-generalization, (3) over-generalization, (4) modelling error, (5) prototyping error; and (6) process-object error in teaching mathematics in elementary schools. Some misconceptions have taken root and are difficult to remove, called "ontological misconceptions" because of teachers' years of belief that the knowledge they received was true when in fact it was not quite right.