p-Index From 2021 - 2026
6.017
P-Index
This Author published in this journals
All Journal IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Foristek Lontar Komputer: Jurnal Ilmiah Teknologi Informasi JSI: Jurnal Sistem Informasi (E-Journal) Jurnal Simantec Jurnal Mahasiswa Fakultas Hukum Majalah Komunikasi Massa Proceeding of the Electrical Engineering Computer Science and Informatics Journal of Information Technology and Computer Science (JOINTECS) JURNAL MEDIA INFORMATIKA BUDIDARMA SMARTICS Journal Jurnal Eksplora Informatika JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Elektrika Conference on Innovation and Application of Science and Technology (CIASTECH) Jurnal RESISTOR (Rekayasa Sistem Komputer) Systemic: Information System and Informatics Journal Jurnal Mantik Jurnal Ilmu Komputer dan Bisnis JUKANTI (Jurnal Pendidikan Teknologi Informasi) Jurnal Teknologi Dan Sistem Informasi Bisnis JSR : Jaringan Sistem Informasi Robotik e-NARODROID Jurnal Teknik Informatika (JUTIF) Jurnal Nasional Ilmu Komputer Insyst : Journal of Intelligent System and Computation Wijayakusuma Law Review Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen Jurnal Nasional Teknik Elektro dan Teknologi Informasi KNOWLEDGE: Jurnal Inovasi Hasil Penelitian dan Pengembangan Jurnal Borneo Informatika dan Teknik Komputer (JBIT) SATIN - Sains dan Teknologi Informasi Nusantara Journal of Computers and its Applications Jurnal Pendidikan Teknologi Informasi (JUKANTI) Determinasi: Jurnal Penelitian Ekonomi Manajemen dan Akuntansi Digitus : Journal of Computer Science Applications
Claim Missing Document
Check
Articles

An Analysis How Customers Ratings and Reviews Impact Prices of Electronics on Lazada Izzudin, Rafi; Nugroho, Aryo; Prakoso, Muhammad Wisnu; Kirana, Viona Chandra; Nur, Putri Annisa
Determinasi: Jurnal Penelitian Ekonomi Manajemen dan Akuntansi Vol. 3 No. 3 (2025)
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/determinasi.v3i2.478

Abstract

This study investigates the influence of customer ratings and reviews on the prices of e-commerce products listed on Lazada, a leading e-commerce platform. Using a quantitative research design, data from 99 product listings were analyzed using linear regression to explore the relationships between price, total reviews, and average rating. Contrary to initial hypotheses, the results did not reveal a significant predictive power of customer ratings or number of reviews on product prices, highlighting the complexity of online pricing dynamics. The findings suggest that other factors—such as brand reputation, product features, and marketing strategies—play a more substantial role in determining prices. These insights recommend a multifaceted approach to pricing strategies in e-commerce, moving beyond customer feedback metrics to optimize profitability and customer satisfaction. Future research could incorporate additional variables and advanced modeling techniques to deepen the understanding of pricing mechanisms in digital marketplaces.
Empowering Decision-Making through Big Data Analytics: A Narrative Review of Techniques, Tools, and Industrial Applications Nugroho, Aryo
Digitus : Journal of Computer Science Applications Vol. 2 No. 3 (2024): July 2024
Publisher : Indonesian Scientific Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61978/digitus.v2i3.836

Abstract

Big Data Analytics (BDA) has become a pivotal enabler of data-driven decision-making across various industrial sectors. This narrative review aims to synthesize existing literature on BDA techniques, tools, and applications to identify their role and impact in decision support systems. The review draws upon scholarly databases such as Scopus, IEEE Xplore, and Google Scholar, utilizing a systematic search strategy with Boolean keyword combinations to retrieve relevant literature. Studies were screened based on inclusion and exclusion criteria, focusing on empirical findings and practical applications of BDA across domains. Findings reveal that techniques such as data mining, predictive analytics, and machine learning offer enhanced accuracy and real-time capabilities, leading to better outcomes in healthcare diagnostics, manufacturing efficiency, and logistics optimization. The utilization of platforms like Hadoop, Spark, and Tableau demonstrates both functional versatility and implementation challenges, influenced by cost, infrastructure, and human capital readiness. Furthermore, the success of BDA initiatives is closely linked to organizational factors including data quality and workforce expertise. Systemic barriers such as strict data policies, fragmented IT infrastructures, and limited data access in low-resource settings impede optimal BDA deployment. This review underscores the need for strategic policy reforms, technological investments, and capacity building to realize the full potential of BDA. By addressing existing limitations and supporting future research directions, organizations can harness BDA to enable informed, agile, and sustainable decision-making.
Sentiment as Signal: Detecting Political Misinformation in Indonesia’s 2024 Election via Lexicon Based NLP Dewi, Ratna Kusuma; Nugroho, Aryo
Digitus : Journal of Computer Science Applications Vol. 2 No. 3 (2024): July 2024
Publisher : Indonesian Scientific Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61978/digitus.v2i3.951

Abstract

The 2024 Indonesian presidential election witnessed heightened political discourse on social media, accompanied by an alarming rise in misinformation. This study explores the use of lexicon augmented sentiment analysis as a method to detect hoax content in electoral conversations across Twitter, TikTok, and Meta platforms. By combining sentiment polarity analysis with weak supervision and partial manual validation, we developed a hybrid model tailored to Bahasa Indonesia. Using around 50,000 social media posts combined with a verified hoax index from MAFINDO, we examined how sentiment changed over time within political hashtags. We found that sentiment sharply declined after major events like debates and result announcements. Importantly, posts with very negative tone were 3–9 times more likely to contain misinformation, with 18% directly matching confirmed hoaxes. The hybrid model improved classification accuracy from 64% to 78%, showing its practical potential. The results confirm that sentiment polarity particularly extreme negativity can serve as a leading indicator for misinformation outbreaks. By aligning lexicon based sentiment scores with external verification sources, this framework enables scalable and semi automated detection of political hoaxes in low resource language settings. Ethical considerations in data handling, platform compliance, and demographic inclusivity are emphasized throughout the methodology. This research contributes to computational political analysis by validating a practical, replicable model for electoral misinformation detection. Future work should extend toward multimodal detection, real time dashboards, and participatory collaborations with fact checkers and regulatory bodies.
Real Time Traffic Engineering with In Band Telemetry in Software Defined Data Centers Nugroho, Aryo; Juwari; Marthalia, Lia
Digitus : Journal of Computer Science Applications Vol. 3 No. 3 (2025): July 2025
Publisher : Indonesian Scientific Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61978/digitus.v3i3.974

Abstract

As data centers scale to accommodate dynamic workloads, real-time and fine-grained traffic engineering (TE) becomes critical. Software Defined Networking (SDN) offers centralized control over data flows, yet its effectiveness is constrained by traditional telemetry mechanisms that lack responsiveness. In-Band Network Telemetry (INT) addresses this gap by embedding real-time path metrics directly into packets, enabling adaptive traffic control based on live network conditions. This study implements and evaluates INT in a programmable Clos fabric using P4 enabled switches. It compares three TE strategies: static ECMP, switch assisted CONGA, and INT informed INT HULA. The simulation incorporates synthetic and trace based data center workloads, including elephant flows and incast scenarios. Performance is assessed using flow completion time (FCT), queue depth, link utilization, and failure recovery speed. INT metadata sizes (32–96 bytes) are also analyzed to quantify overhead vs. performance trade offs. Results indicate that INT HULA consistently outperforms ECMP and CONGA. It reduces FCT by up to 50%, decreases queue occupancy by a factor of three, increases link utilization by more than 25%, and shortens reroute times from 85 ms to 20 ms. These gains are achieved with manageable telemetry overhead and without requiring hardware changes. INT’s real time visibility also improves decision making in centralized SDN controllers and supports hybrid TE architectures. In conclusion, INT fundamentally enhances SDN based TE by enabling closed loop, real time optimization. Its integration with programmable data planes and potential for AI based control loops positions it as a cornerstone of next generation data center networks.
Prediksi Curah Hujan Menggunakan Random Forest dan VAR di Kediri Raya Rahmah, Intan Luthfiyah; Nugroho, Aryo; Siregar, Raja Yosia Manahan Trinitas
Jurnal Teknologi Dan Sistem Informasi Bisnis Vol 7 No 4 (2025): Oktober 2025
Publisher : Prodi Sistem Informasi Universitas Dharma Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jteksis.v7i4.2141

Abstract

Perubahan pola curah hujan di Kediri Raya berdampak signifikan pada sektor pertanian dan manajemen infrastruktur. Seiring beroperasinya Bandara Dhoho sebagai pusat ekonomi baru, dibutuhkan sistem prediksi cuaca yang akurat untuk mendukung kelancaran operasional dan mitigasi risiko. Penelitian ini mengusulkan model prediksi curah hujan harian menggunakan dua pendekatan: Random Forest (RF) dan Vector Autoregression (VAR). Data yang digunakan bersumber dari BMKG, mencakup suhu, kelembapan, durasi penyinaran matahari, dan kecepatan angin. Transformasi logaritmik diterapkan untuk menstabilkan fluktuasi data sebelum pemodelan. Evaluasi dilakukan menggunakan metrik Mean Squared Error (MSE). Hasil menunjukkan bahwa model VAR lebih unggul dalam menangkap dinamika waktu curah hujan, sementara RF memberikan hasil prediksi yang lebih stabil. Model ini dapat dikembangkan lebih lanjut dalam sistem informasi prediksi cuaca untuk mendukung perencanaan mitigasi bencana, pengelolaan sumber daya air, dan strategi operasional Bandara Dhoho. Keywords: Prediksi curah hujan, Random Forest, Vector Autoregression, Bandara Dhoho, Sistem Informasi
ANALISIS PENGUJIAN PENETRASI PADA LAYANAN HOSTING MENGGUNAKAN METODE BLACK BOX (Studi kasus : Blogspot, Wordpress dan Shared Hosting) Aditya Bimandaru; Alamsyah, Alamsyah; Nugroho, Aryo
Foristek Vol. 13 No. 1 (2023): Foristek
Publisher : Foristek

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54757/fs.v14i1.238

Abstract

Analyzing the security of hosting services is important to ensure website security. This research was conducted to test thesecurity level of the Village website. By using 15 samples with 5 websites each, on each Hosting service such as Wordpress,Blogspot, and Shared Hosting. With the Black Box method and Google dork to find the target website to be tested. Open WebApplication Security Project (OWASP) Zed Attack Proxy (ZAP) to find security holes by scanning websites. The resultsobtained are usually 3 types of vulnerabilities, namely Cross Site Scripting (XSS), Cross-Site Request Forgery (CSRF)Tokens, and Clickjacking. After that, analyze the results by seeing how many warnings you get from the scanning process tofind out which hosting service has the highest level of security.This research aims to help the village government build a secure village website. By choosing a safe hosting service andknowing how to find security holes on the website that has been made, so that you can fix these security holes.Keywords : Hosting, OWASP, ZAP, XSS, CSRF.
Prototype Pemantauan Konsumsi Energi Listrik pada Firebase Menggunakan PZEM-004T Yasa, Kadek Amerta; Purbhawa, I Made; Sumerta Yasa, I Made; Teresna, I Wayan; Nugroho, Aryo; Winardi, Slamet
Eksplora Informatika Vol 12 No 2 (2023): Jurnal Eksplora Informatika
Publisher : Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/eksplora.v12i2.993

Abstract

Saat ini kWh meter konvensional masih digunakan untuk memantau konsumsi listrik di Indonesia, sehingga masih diperlukan petugas yang mengunjungi rumah pelanggan setiap bulannya. Hal ini mengakibatkan Perusahaan Listrik Negara (PLN) harus menyediakan pencatat meter yang menjadi beban biaya perusahaan. Sementara itu pencatat meter mengalami kendala ketika rumah pelanggan kosong dan tidak dapat dicatat meternya. Permasalahan ini dapat diselesaikan jika menggunakan teknologi pencatatan yang otomatis dan bisa dikendalikan dari jarak jauh. Saat ini kemajuan teknologi memungkinkan konvergensi antara saluran komunikasi dengan berbagai hal. Teknologi yang dikenal dengan Internet of Things (IoT). Penelitian ini bertujuan untuk membuat pemantauan konsumsi energi listrik berbasis Internet of Things (IoT). Alat ini akan membantu perusahaan (PLN) dalam memantau penggunaan listrik setiap pelanggan tanpa petugas pencatat meter. Prototype alat ini telah berhasil dikerjakan menggunakan PZEM-004T yang kemudian mampu menampilkan tegangan, arus daya, power factor dan waktu. Luaran dari alat kwH meter teknologi IoT ini kemudian dikirimkan ke basis data Firebase. Firebase memiliki keunggulan karena ditempatkan dalam cloud. Sehingga data yang diperoleh dapat juga ditampilkan dalam aplikasi android. Hasil pengujian dari prototype kemudian dilakukan pengujian beban dan dibandingkan dengan alat ukur sejenis yang ada di pasaran. Pengujian beban menghasilkan keakuratan sistem dengan rata-rata persentase akurasi tegangan: 99.25%, arus: 99.82%, daya: 97.50% dan factor daya: 98.78%. Penelitian ini menghasilkan prototipe menggunakan ESP32 dan PZEM-004T yang sangat akurat sehingga dapat direkomendasikan untuk pencatatan daya listrik yang mampu mengurangi beban biaya operasional PLN.
CYBERBULLYING DETECTION ON TWITTER USES THE SUPPORT VECTOR MACHINE METHOD Kusuma, Bayu Indra; Aryo Nugroho
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.809

Abstract

Social media is a platform that provides facilities for users to engage in various social activities. However, the increasing popularity of social media in the modern era also cannot be separated from the occurrence of several negative impacts, one of which is cyberbullying. Cyberbullying is an action that is done online that can harm the mental and emotional condition of an individual. To reduce this problem, this research aims to investigate the performance of the C-SVC and Nu-SVC algorithms from the Support Vector Machine method in classifying cyberbullying sentences. The data used is comments data from the @puanmaharani_ri account on Twitter, which was collected from September 25, 2020, to September 29, 2022, totaling 5,000 data. After the data is collected, it is labeled and preprocessed, and then the data will be weighted using the TF-IDF method. The result of the TF-IDF will be displayed in the form of a word cloud. Next, the Support Vector Machine method will classify cyberbullying sentences using several percentages split combinations such as 60%, 70%, 80%, and 90%. The test results show that the C-SVC method has the highest accuracy of 79.6% at a 70% percentage split, while Nu-SVC has the highest accuracy of 78.9% at a 60% percentage split. From these results, it can be concluded that the Support Vector Machine method with the C-SVC algorithm provides better results than Nu-SVC in classifying cyberbullying sentences.
Penerapan Sistem Enterprise Resource Planning (ERP) pada Usaha Makanan Siap Saji Diva Istighfarin Ayu Setianti; Maulidya Nanda Azizah; Aryo Nugroho
SATIN - Sains dan Teknologi Informasi Vol 10 No 1 (2024): SATIN - Sains dan Teknologi Informasi
Publisher : STMIK Amik Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33372/stn.v10i1.1101

Abstract

Analisis kebutuhan Enterprise Resource Planning (ERP) untuk usaha makanan siap saji adalah langkah penting dalam memastikan sistem yang diimplementasikan dapat meningkatkan efisiensi operasional, pengelolaan inventaris yang lebih baik, pelayanan pelanggan yang lebih baik, dan pertumbuhan bisnis yang berkelanjutan. Pengembangan prototype model adalah pendekatan untuk merancang dan menguji model, serta mendapatkan umpan balik dari pengguna atau pemangku kepentingan, sehingga memungkinkan identifikasi masalah dan perbaikan desain sebelum pengembangan penuh. Metode ini memungkinkan evaluasi sebelum versi finalnya dibuat, dengan tabel menunjukkan hasil pengujian yang telah dilakukan oleh peneliti pada fitur-fitur sistem ERP. Pengujian dilakukan oleh pemilik usaha langsung, dengan arahan peneliti mengenai hal yang perlu diuji pada sistem. Hasilnya menunjukkan bahwa fungsi sistem ERP berjalan baik, seperti yang diamati dari hasil wawancara dan observasi. Implementasi sistem menggunakan Odoo 11.0 telah berhasil dilakukan.
Analisis Kepuasan Sistem Informasi DAPODIK PAUD-DIKMAS Menggunakan Metode TAM dan HOT-Fit Wahyu Lestari, Rani; Alvina Shanaz Oktavia; Aryo Nugroho
SATIN - Sains dan Teknologi Informasi Vol 10 No 1 (2024): SATIN - Sains dan Teknologi Informasi
Publisher : STMIK Amik Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33372/stn.v10i1.1102

Abstract

Kepuasan pengguna adalah indikator penting dalam mengevaluasi sejauh mana sistem tersebut memenuhi harapan dan kebutuhan pengguna yang mencakup berbagai aspek, seperti persepsi kegunaan, kemudahan penggunaan, kualitas layanan, dan manfaat yang diperoleh oleh pengguna. Penelitian ini secara khusus berfokus pada penilaian tingkat kepuasan pengguna terhadap sistem DAPODIK PAUD-DIKMAS di Kecamatan Kenjeran, dengan menerapkan metode Technology Acceptance Model (TAM) dan Human Organization Technology-Fit (HOT-Fit). Pemilihan TAM dan HOT-Fit dilakukan berdasarkan keandalan dan relevansinya dalam mengukur kepuasan pengguna terhadap sistem informasi. Tujuan penelitian adalah memahami sejauh mana pengguna sistem merasakan kepuasan dalam menggunakan DAPODIK PAUD-DIKMAS dan mengidentifikasi faktor-faktor yang berkontribusi pada kepuasan pengguna serta keberhasilan sistem ini. Pengumpulan data melibatkan distribusi kuesioner kepada 81 responden yang dipilih melalui teknik purposive sampling dan quota sampling. Hasil analisis menggunakan model TAM mengindikasikan bahwa tingkat kepuasan pengguna DAPODIK PAUD-DIKMAS mencapai rata-rata 81,53%, dengan penekanan pada variabel Perceived Usefulness, Perceived Ease Of Use, dan Behavioral Intention To Use. Sementara hasil analisis menggunakan model HOT-Fit menunjukkan tingkat kepuasan sistem mencapai rata-rata 81,42%, dengan penekanan pada perluasan kualitas sistem, termasuk System Quality, Information Quality, Service Quality yang memerlukan peningkatan.
Co-Authors Ach Syuhbanul Yaumi Ach. Syuhbanul Yaumi Achlaq, Mochammad Mizanul Achmad Musyaffa Taufiqi Aditya Bimandaru Agung Widodo Ahmad Khozin Al Azam, Moh Noor Al-Azam, Moh Noor Alamsyah - Alfarizi Kurniawan Lesmana Alvina Shanaz Oktavia Amelia Miska Rahayu Andhika Ryan Pratama Anggi Rizki Septiani Anindito, Benediktus Aprilian Lisa Maryanto Arief Kurniawan Arief Kurniawan Arief Kurniawan Arifah Putri Nabilah Awalludiyah Ambarwati Azizah, Maulidya Nanda Badrus Zaman Bagus Prasetyo Budiono Bayu Indra Kusuma Bayu Saputra Benediktus Anindito Benny Wijaya Budi Wibowo Suhanjoyo Cahyo Darujati Daniel Happy Putra Darian Rizaludin Darujati, Cahyo Dedy Priyambodo Dewi, Ratna Kusuma Din Syamsudin Din Syamsudin Diva Istighfarin Ayu Setianti Eko Budi Santoso Fachrudin, Tresna Maulana Fardiansyah, Muhammad Yusuf Firmansyah, Fariz Galih Hery Herlambang Herlambang, Galih Hery Hidayatillah, Rumaisah I Made Purbhawa I Wayan Teresna, I Wayan Imron Rosydi Irhab, Moh Dzaky Islam, Mochammad Fakhrul Ivan Ubaidillah Sekar Wibowo Izzudin, Rafi Jacky Ma'ruf Fatoni Jelita, Lucia Devlina Adventia Kadek Amerta Yasa Kirana, Viona Chandra Kunto Eko Susilo Latifah Rifani Lestari, Rani Wahyu Marthalia, Lia Maulana, Achmad Zaffri Maulidya Nanda Azizah Mauridhi Hery Purnomo Mirwan Mirwan Mochammad Mizanul Achlaq Moh Noor Al Azam Moh Noor Al-Azam Moh Noor Al-Azam Mohammad Hakam Muh Dimas Yudianto Muhamad Nur Arifin Muhammad Mustajib Muhammad, Iqbal Nur Neta Kania Salsabila Nur, Putri Annisa Oktavia, Alvina Shanaz Permana, Kevin Praba Caesar Bagaskara Prakoso, Muhammad Wisnu Putra, Zuda Pradana Rahmah, Intan Luthfiyah Richardus Eko Indrajit Ricsa Andrean Ricsa Andrean Rumaisah Hidayatillah Rumaisah Hidayatillah Satria Eka Dicky Kurniawan Septian Fendy Septian Fendyputra Pratama Septian, Jeremy Andre Setianti, Diva Istighfarin Ayu Setyawan, Kukuh Rachmad Siregar, Raja Yosia Manahan Trinitas Slamet Winardi Sumerta Yasa, I Made Surya Sumpeno Susilo, Kunto Eko Tresna Maulana Fahrudin Tresna Maulana Fahrudin Wahyu Lestari, Rani Wardhana, Sultan Fahresi Duta Wiwin Agus Kristiana Yosia Chrismas Decky Halundaka yosia halundaka Yulius Satmoko Raharjo Zainul Zulfiqkar Zainul Zulfiqkar Zuda Pradana Putra