Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Building of Informatics, Technology and Science

Evaluasi Komparatif Algoritma Naïve Bayes, KNN, Logistic Regression, SVM, dan Extra Trees untuk Analisis Sentimen Tokopedia Ciputra, Indramawan; Fahmi, Amiq
Building of Informatics, Technology and Science (BITS) Vol 7 No 3 (2025): December 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i3.8537

Abstract

The rapid evolution of digital technology has catalyzed a shift in consumer behavior, particularly in online shopping activities facilitated by e-commerce platforms such as Tokopedia. User-generated reviews yield large-scale textual data that can be systematically analyzed to uncover consumer sentiment in a factual and structured manner. This study aims to evaluate and compare the performance of five sentiment classification algorithms Naive Bayes, K-Nearest Neighbors (KNN), Logistic Regression, Support Vector Machine (SVM), and Extra Trees Classifier based on user review data from Tokopedia. The analytical workflow begins with web crawling, followed by text preprocessing procedures including tokenization, case folding, and stop-word removal, culminating in sentiment classification using the aforementioned algorithms. Performance evaluation was conducted using four standard metrics accuracy, precision, recall, and F1-score. The results reveal that SVM achieved the highest accuracy at 85%, outperforming KNN and Extra Trees Classifier (84%), Logistic Regression (82%), and Naive Bayes (79%). SVM’s superior performance is attributed to its ability to identify optimal hyperplanes that effectively separate sentiment classes, particularly in high-dimensional feature spaces. These findings offer practical insights for developers of sentiment analysis systems in selecting the most effective algorithm, while reinforcing the strategic application of Natural Language Processing (NLP) techniques within Indonesia’s e-commerce landscape.
Co-Authors -, Suhariyanto Abdul Rohim, Abdul Abu Salam Agus Winarno Agus Winarno Agus Winarno, Agus Al zami, Farrikh Alif , Moh. Fachri Alif, Moh. Fachri Alzami, Farrikh Apriyanti Apriyanti Ardianda Aryo Prakoso Ariel Bagus Nugroho Asih Rohmani, Asih Astuti, Yani Parti Budi Harjo Budiono Budiono Candra Irawan Catur Supriyanto Ciputra, Indramawan Diana Purwitasari Edi Faisal Edi Sugiarto Edi Sugiarto Edi Sugiarto Edi Sugiarto Edi Sugiarto Edi Sugiarto Egia Rosi Subhiyakto, Egia Rosi Erlin Dolphina Etika Kartikadarma Fhaldian, Wahyu Fikri Budiman Hadi, Heru Pramono Harun Al Azies Hindarto, Aris Nur Husna, Farida Amila Indra Gamayanto ISWAHYUDI ISWAHYUDI Izzatil Ismah, Nabila Karis Widyatmoko Kurnia Desita, Raafi Lalang Erawan Laurensius Tokan, Geraldinho Lintang Mekar Tanjung Maurensa, Giacinta Mauridhi Hery Purnomo Megantara, Rama Aria Moch. Eko Rustiyono Muhammad Fais Ramadhani Muhammad Hilmy Munsarif Muhammad Naufal, Muhammad Mulyanto, Edy Muslih Muslih MY. Teguh Sulistyono Nova Rijati Novi Hendriyanto, Novi Prasetya, Rakan Shafy Pujiono Pujiono Pujiono Pujiono Pujiono Putra, Wahyu Bagus Wicaksono Ramadhan Rakhmat Sani Respati Wulandari Ridha Rahmawati Ridho Pambudi Rizky Adrianto Salsabila, Rizka Mars Sasono Wibowo Sidharta, Bayu Adjie Sihombing, Drigo Alexander Sri Winarno Sudibyo, Usman Suharnawi Suharnawi Suryo Adi Nugroho Tacharri, Chusnuut Tsani, Maulida Aristia Utomo, Danang Wahyu Wibowo, Syifa Sofia Yumna Huwaida, Imtiyaz Yuventius Tyas Catur Pramudi Zaenal Arifin Zahro, Azzula Cerliana