Claim Missing Document
Check
Articles

Convolutional Neural Network Model for Sex Determination Using Femur Bones Nasien, Dewi; Adiya, M. Hasmil; Afrianty, Iis; Farkhan, Mochammad; Butar-Butar, Rio Juan Hendri
JOIV : International Journal on Informatics Visualization Vol 7, No 4 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.7.4.1711

Abstract

Forensic anthropology is the critical discipline that applies physical anthropology in forensic education. One valuable application is the identification of the biological profile. However, in the aftermath of significant disasters, the identification of human skeletons becomes challenging due to their incompleteness and difficulty determining sex. Researchers have explored alternative indicators to address this issue, including using the femur bone as a reliable sex identifier. The development of artificial intelligence has created a new field called deep learning that has excelled in various applications, including sex determination using the femur bone. In this study, we employ the Convolutional Neural Network (CNN) method to identify the sex of human skeleton shards. A CNN model was trained on 91 CT-scan results of femur bones collected from Universiti Teknologi Malaysia, comprising 50 female and 41 male patients. The data pre-processing involves cropping, and the dataset is divided into training and validation subsets with varying percentages (60:4, 70:30, and 80:20). The constructed CNN architecture exhibits exceptional accuracy, achieving 100% accuracy in both training and validation data. Moreover, the precision, recall, and F1 score attained a perfect score of 1, validating the model's precise predictions. The results of this research demonstrate excellent accuracy, confirming the reliability of the developed model for sex determination. These findings demonstrate that using deep learning for sex determination is a novel and promising approach. The high accuracy of the CNN model provides a valuable tool for sex determination in challenging scenarios. This could have important implications for forensic investigations and help identify victims of disasters and other crimes.
Co-Authors Adiya, M. Hasmil Afriyanti, Liza Aftari, Dhea Putri Agnesti, Syafira Al Rasyid, Nabila Alfaiza, Raihan Zia Alghi, Anugerah Febryan Aprima, Muhammad Dzaky Arianto Arianto Arif, Arif Prasetya Ayu Lestari, Fajar Vilbra Azhima, Mohd Baeda, Abd. Gani Bangu, Bangu Burhanuddin, Yuniarti Ekasaputri Butar-Butar, Rio Juan Hendri Dewi Nasien Dinata, Ferdian Arya Elvia Budianita Fadhilah Syafria Fahrozi, Aqshol Al Farkhan, Mochammad Febi Yanto Fitri Insani Fitri, Anisa Gusti, Siska Kurnia Guswanti, Widya Hamid, Fanul Hariansyah, Jul Harni, Yulia Hasibuan, Aldiansyah Pramudia Hasidu, La Ode Abdul Fajar Hasria Hasria, Hasria Hatta, M Ilham Ika Lestari Salim Jasril Jasril Kamaruddin, Anggi Ashari Khair, Nada Tsawaabul Kurnia Gusti, Siska Kurniawan, Saifur Yusuf La Aba Lubis, Anggun Tri Utami BR. Ma'rifah, Laila Alfi Mariany Mariany Maryani Maryani Mhd. Kadarman Muhammad Fikry Muhammad Irsyad Naim, Rosani Nasus, Evodius Nazir, Alwis Nazruddin Safaat Nazruddin Safaat H Ode Abdul Fajar Hasidu, La Ode Muhammad Sety, La Pasiolo, Lugas Pratama, Dandi Irwayunda Putri, Atika Putri, Widya Maulida Rahmad Abdillah Ramadhani, Astrid Rasmiati Rasyid Rosmiati Rosmiati Safar, Muhammad Saleh, Ramlah Saputri, Ekawati Saputri, Ekawati Saputri, Sety, La Ode Muhamad Siti Sri Rahayu Suharsono Bantun Surya Agustian Susanti, Risqi Wahyu Suwanto Sanjaya Syahrianti Syahrianti Teluk, Grace Tedy Tukatman Tukatman Tulak, Grace Tedy Vitriani, Yelfi Yuhanah Yuhanah Yulianti, Eva Tri Yuniarti Eka Saputri Yuniarti Eka Saputri B Yusra, Yusra Zabihullah, Fayat Zulastri, Zulastri