Claim Missing Document
Check
Articles

UJI KETELITIAN CETAK PRODUK LENGKUNG PRINTER 3D ANET A8 Burhanuddin, Yanuar; Candra, Made Gita Arya; Teguh Panuju, Achmad Yahya; Harun, Suryadiwansa
Machine : Jurnal Teknik Mesin Vol 9 No 1 (2023): Machine : Jurnal Teknik Mesin
Publisher : Jurusan Teknik Mesin Fakultas Sains dan Teknik Universitas Bangka Belitung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33019/jm.v9i1.3799

Abstract

This study aims to determine the accuracy of the Anet A8 3D Printer in printing curved products with the infill speed, print speed and layer height factors in order to obtain optimal results and determine the most influential parameters in printing curved products using the Anet A8 3D Printer. The method used in testing the accuracy of printing 3D printing products is Taguchi L9. From this study it can be concluded that the most optimal process parameters for the accuracy of the dimensions of the specimen diameter are successively for accuracy, namely layer height (0.3000 mm), infil speed (50 mm/s) and layer speed (30 mm/s) then the most optimal process parameters for the accuracy of the curved dimensions of the specimen are successively for accuracy, namely layer height (0.2000 mm), infil speed (50 mm/s). s) and layer speed (40 mm/s). The results of the ANOVA analysis show that the most contributed parameter in printing curved specimens with the diameter dimension is the layer height and the curved dimension is the infill speed.
MODEL 3D IMPLAN LUTUT FEMUR DARI REKONSTRUKSI TULANG LUTUT DENGAN METODE REVERSE ENGINEERING BERBANTUAN PEMINDAI CT-SCAN Harun, Suryadiwansa; Ismunandar, Helmi; Burhanuddin, Yanuar; Supriyadi, Satrio Darma
Jurnal Rekayasa Mesin Vol. 15 No. 1 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i1.1498

Abstract

As a person ages, usually after age 50, knee joint bone damage caused by osteoarthritis can occur. It is to cause pain in the knee joint so that its function moves abnormally. The knee joint bone damage could be replaced with a prosthesis (Total Knee Replacement, TKR) to restore the knee joint's normal movement function. However, orthopaedic doctors sometimes have difficulty choosing standard implant designs available for patients' knees when performing TKR surgery, especially for Asian patients, including Indonesians. It is due to the geometry of the standard implant being different from the patient's knee anatomical shape. As a result, postoperative pain reactions can occur. Therefore, this study is to customize the TKR femoral implant's design according to the knee bone's geometry, especially in Indonesian patients. Reverse Engineering (RE) technology assisted by the CT-Scan and the boundary surface technique was applied for reconstructing the patient's knee bone into a femoral implant. The application of RE is initially, the patient's knee bone sample was scanned with Computer Tomography (CT) Scan. Then, the femur implant model was designed on the surface of the patient's knee bone using the boundary surface method. The 3D model of the TKR femoral implant was successfully designed to match the geometry of the patient's femur bone. It will be a reference for designing other TKR implants, namely the tibia component.
GEOMETRIC DESIGN OF CROWN WORM GEAR WITH STRAIGHT-LINED BLADE PROFILE Andrianto, Moeso; Litaay, Christina; Harun, Suryadiwansa; Burhanuddin, Yanuar; Arifin, Achmad
Jurnal Rekayasa Mesin Vol. 15 No. 3 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i3.1874

Abstract

Applications for worm gear drives are common in industry. The crown worm drive is a new kind of inventive worm drive that has just been proposed. Nevertheless, no prior research has been done on the geometric design of crown worm gears with straight-lined blade profiles. On the other hand, designing the cutting tool depends on the geometric design of the workpiece surface modeling. As a result, this study proposed a geometric design for the straight-lined blade shape of the crown worm gear. Numerical examples are used to evaluate the accuracy and applicability of the suggested mathematical model. Furthermore, the modeling of a variable center-distance crown worm gear is completed. It is also feasible to model the crown worm gear using different tool profiles, such as concave and convex profiles.
Optimization of tool wear and surface roughness in ST-37 steel turning process with varying tool angles and machining parameters Burhanuddin, Yanuar; Harun, Suryadiwansa; Ibrahim, Gusri Akhyar; Hamni, Arinal
Jurnal Polimesin Vol 22, No 3 (2024): June
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v22i3.4983

Abstract

The process of cutting low carbon steel (ST-37) typically utilizes High-Speed Steel (HSS) tools owing to their high hardness, affordability, and ease of shaping tool geometry. In machining, tool geometry plays a crucial role in the material cutting process and determines the quality of the final product, particularly surface roughness. The objective of this research is to achieve optimal surface roughness by varying the tool geometry and nose radius. This study employed an experimental approach using ST-37 and HSS tools. The variations in tool geometry include side rake angles of 12°, 15°, and 18°; side cutting edge angles of 85°, 80°, and 75°; and nose radii of 0 mm, 0.4 mm, and 0.8 mm. The machining parameters applied consist of a cutting depth of 1 mm and 2 mm, spindle rotation speeds of 185 rpm, 425 rpm, and 624 rpm, and a feed rate of 0.05 mm/rev, 0.075 mm/rev, and 0.1 mm/rev. Tool wear measurements were captured using a USB camera, whereas the surface roughness was assessed using a surface roughness tester. The impact of the tool geometry on the surface roughness was analyzed using the Taguchi-Grey Relational Analysis (Taguchi-GRA) and ANOVA methods. The optimal combination for ST-37 lathe machining with a sharpening tool is: A1 (cutting depth 1 mm), B1 (cutting speed 17.42 m/min), C3 (feed 0.05 mm/rev), D1 (corner radius 0 mm), E3 (side rake angle γ 18°), and F3 (side cutting edge angle γ 75°). According to the Analysis of Variance (ANOVA), three factors—cutting speed, tool tip angle, and chip angle—should be considered to achieve minimal tool wear and desirable surface roughness during machining
Multiresponse optimization of hole number and surface roughness in drilling processes for 316l stainless steel material using Taguchi-grey relational analysis method Pramono, Atik; Burhanuddin, Yanuar; Ibrahim, Gusri Akhyar; Harun, Suryadiwansa
Jurnal Polimesin Vol 22, No 5 (2024): October
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v22i5.4470

Abstract