Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TEKNIK INFORMATIKA

Evaluating User Satisfaction in The Halodoc Application Using a Hybrid CNN-BiLTSM Model for Sentiment Analysis Kurniasari, Dian; Su'admaji, Arif; Lumbanraja, Favorisen Rosyking; Warsono
JURNAL TEKNIK INFORMATIKA Vol. 18 No. 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i2.42762

Abstract

The growing demand for digital healthcare services in Indonesia has driven the adoption of Online Healthcare Applications (OHApps) such as Halodoc. Despite over 65 million users, maintaining user satisfaction remains a challenge. This study employs sentiment analysis using a hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) model to classify user review ratings. A dataset of 10,000 Google Play Store reviews was divided into COVID-19 and post-pandemic segments. The methodology includes data collection, pre-processing, and dataset segmentation for training, validation, and testing. Results indicate that the CNN-BiLSTM model surpasses traditional machine learning by combining CNN’s feature extraction with BiLSTM’s long-term dependency capture, achieving 98.71% accuracy on COVID-19 data and 98.16% post-pandemic. Additionally, the model demonstrates strong performance across other key evaluation metrics, with precision, recall, and F1-score. Misclassification analysis highlights minor errors, particularly in ratings 4 and 5. These findings help healthcare providers enhance digital services by identifying user concerns, improving platform features, and optimizing customer engagement. Beyond healthcare, this approach has real-world applications in e-commerce and financial services, where sentiment analysis informs user experience improvements.
A Case Study: Comparison of LSTM and GRU Methods for Forecasting Oil, Non-Oil, and Gas Export Values in Indonesia Kurniasari, Dian; Nuraini, Maydia Egi; Wamiliana, Wamiliana; Nisa, Rizki Khoirun
JURNAL TEKNIK INFORMATIKA Vol. 17 No. 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.39098

Abstract

This study explores the forecasting of Indonesia’s oil, non-oil, and gas export values, highlighting its critical role in supporting national economic growth. Given the inherent volatility in export values, accurate forecasting is vital for informed economic decision-making. The research employs Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, both well-regarded for their ability to handle sequential data and complex temporal patterns. Model performance was evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The findings indicate that although both models produced nearly identical MAPE values of 99.99% across the oil, non-oil, and gas sectors, the GRU model outperformed the LSTM model with RMSE values of 0.0655 for oil and gas exports and 0.0697 for non-oil and gas exports. Moreover, the GRU model’s forecasts align closely with data from the Central Bureau of Statistics (BPS), which reported an 11.33% decline in Indonesia’s export values by the end of 2023. These results suggest that the GRU model not only offers greater accuracy but is also applicable to other economic forecasting contexts, such as exchange rate and inflation predictions, thereby enhancing economic policy-making.