Claim Missing Document
Check
Articles

Structural Equation Modeling (SEM) untuk Mengukur Pengaruh Pelayanan, Harga, dan Keselamatan terhadap Tingkat Kepuasan Pengguna Jasa Angkutan Umum Selama Pandemi Covid-19 di Kota Ambon Zakheus Putlely; Yopi Andry Lesnussa; Abraham Z Wattimena; Muhammad Yahya Matdoan
Indonesian Journal of Applied Statistics Vol 4, No 1 (2021)
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13057/ijas.v4i1.45784

Abstract

Structural Equation Modeling (SEM) is a statistical analysis technique used to build and test statistical models in the form of causal models. Large-Scale Social Restrictions (PSBB) are government policies to break the chain of spreading the corona virus (Covid-19). This policy certainly has an impact on drivers of public transport services. This research shows that the passengers are very satisfied with the travel safety factor. Meanwhile, service factors and passenger public transport fares are in the satisfied category. Furthermore, the variable service quality (MP), the price of public transportation (H), and passenger safety (KP) have an influence on passenger satisfaction. Because the t-value is greater than 1.96 (for the real level of 5%). The influence of service quality, price and safety variables on passenger satisfaction is 78.1%, the remaining 21.9% is influenced by other variables outside the research.Keywords: covid-19, structural equation modeling, satisfaction.
Analisis Klaster untuk Pengelompokkan Kabupaten/Kota di Provinsi Maluku Berdasarkan Indikator Pendidikan dengan Menggunakan Metode Ward Dewi Ls; Yopi Andry Lesnussa; Mozart W. Talakua; Muhammad Y. Matdoan
Jurnal Statistika dan Aplikasinya Vol 5 No 1 (2021): Jurnal Statistika dan Aplikasinya
Publisher : Program Studi Statistika FMIPA UNJ

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/JSA.05105

Abstract

Analisis klaster merupakan salah satu metode analisis yang bertujuan untuk mengklasterkan objek-objek berdasarkan kemiripan karakteristik yang dimilikinya. Metode yang digunakan pada analisis klaster yaitu metode hierarki. Secara umum metode hierarki dibagi menjadi 5 yaitu : single linkage, complete linkage, average linkage, Ward dan centroid dengan ukuran jarak euclidean. Tujuan dari penelitian ini untuk mengetahui hasil pengklasteran kabupaten/kota di Provinsi Maluku berdasarkan Indikator Pendidikan dengan menggunakan metode Ward. Hasil penelitian pengklasteran kabupaten/kota sebanyak 3 klaster, klaster pertama terdiri dari 2 kabupaten/kota yaitu Maluku Tengah dan Kota Ambon dengan tingkat pendidikan yang tinggi. Klaster kedua terdiri dari 4 kabupaten yaitu Kabupaten Seram Bagian Barat, Kabupaten Buru, Kabupaten Seram Bagian Timur dan Kabupaten Kepulauan Tanimbar dengan tingkat pendidikan rendah. Klaster ketiga terdiri dari 4 kabupaten/kota yaitu Kabupaten Maluku Tenggara, Kabupaten Maluku Barat Daya, Kabupaten Kepulauan Aru, Kabupaten Buru Selatan dan Kota Tual dengan tingkat pendidikan sedang.
Basic Website Creation Training for Muhammadiyah Mamala High School Students in Central Maluku Regency Citra Fathia Palembang; Mozart Winston Talakua; Zeth Arthur Leleury; Yopi Andry Lesnussa; Francis Yunito Rumlawang; Jefri Esna Thomas Radjabaycolle; Abraham Zakharia Wattimena; Henry Willyam M. Patty
MOVE: Journal of Community Service and Engagement Vol. 1 No. 3 (2022): January 2022
Publisher : EQUATOR SINAR AKADEMIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (108.759 KB) | DOI: 10.54408/move.v1i3.32

Abstract

The team's implementation of community service activities provides materials and training to Muhammadiyah Mamala High School students on how to easily build a website from the ground up using a content management system (CMS) until the website is successfully uploaded to the Internet (hosting), both for free and for a fee. The goal of this community service activity is for students to gain information technology knowledge that is not limited to being able to access information, but also to being able to create a container/information medium in the form of a website and, hopefully, to help the school in developing the school website in the future
Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu di Provinsi Maluku dengan Menggunakan Regresi Poisson Salmon N. Aulele; Astrid G. Heumasse; Yopi Andry Lesnussa
Jurnal EurekaMatika Vol 9, No 2 (2021): Jurnal EurekaMatika
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (386.892 KB) | DOI: 10.17509/jem.v9i1.33244

Abstract

The statistical method used to model the relationship between the response variable (Y) and one or more independent variables (X) is regression analysis. Linear regression equations are used to analyze the response variables in the form of continuous random variables and follow a normal distribution, however, many response variables are found that are not normally distributed and are not linear in parameters becausethe mortality rate for mothers and babies always increases from year to year. The number of maternal deaths that occurred in Maluku province is an example of data count. Poisson regression is a nonlinear regression analysis of the Poisson distribution which is generally used in analyzing discrete (count) data. The purpose of this study was to determine the factors that significantly affect maternal mortality in Maluku Province using Poisson Regression, The results of this study indicate that the factors that significantly influence the number of maternal deaths in Maluku Province are the number of health centers and medical personnel in each regency / district. City (X1), the percentage of female population with education that has completed at least SD per Regency / City (X2), the frequency coverage of K4 services for pregnant women in each Regency / City (X3), and the percentage of immunization coverage for pregnant women in each Regency / City (X4).Keywords: Maternal Mortality, Poisson Regression, Regression Analysis. AbstrakMetode statistika yang digunakan untuk memodelkan hubungan antara variabel respons (Y) dengan satu atau lebih variabel bebas (X) adalah analisis regresi. Persamaan regresi linear digunakan untuk menganalisis variabel respons yang berupa peubah acak kontinu dan mengikuti distribusi normal, namun banyak ditemukan variabel respons yang tidak berdistribusi normal dan tidak linear dalam parameter. Jumlah kematian ibu yang terjadi di provinsi Maluku merupakan salah satu contoh data count. Regresi Poisson merupakan analisis regresi nonlinear dari distribusi Poisson yang umumnya digunakan dalam menganalisis data diskrit (count). Tujuan dari penilitian ini adalah untuk mengetahui faktor-faktor yang signifikan mempengaruhi jumlah kematian ibu di Provinsi Maluku dengan menggunakan Regresi Poisson. Hasil penelitian ini menunjukan  bahwa Faktor-faktor yang signifikan mempengaruhi jumlah kematian ibu di Provinsi Maluku adalah jumlah puskesmas dan tenaga medis tiap Kabupaten/Kota (X1), persentase penduduk perempuan dengan pendidikan yang ditamatkan minimal SD tiap Kabupaten/Kota (X2), cakupan frekuensi pelayanan K4 bagi ibu hamil tiap Kabupaten/Kota (X3), dan persentase cakupan imunisasi bagi ibu hamil tiap Kabupaten/Kota (X4). 
Analisis Regresi Linier Berganda untuk Melihat Pengaruh Budaya Organisasi, Kepemimpinan, Transformasional, dan Motivasi Kerja (Studi Kasus : PT. Telkom Ambon) H. Lellolsima; M. S. Noya Van Delsen; Yopi Andry Lesnussa
JUSTE (Journal of Science and Technology) Vol. 2 No. 1 (2021): JUSTE
Publisher : LLDIKTI WIlayah XII Ambon

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51135/justevol2issue1page90-96

Abstract

Human resources are one of the important things in running a company. In this era of increasing competition, both the trade and.service industries. So.the company needs to improve its performance. To improve the performance of the company, it is necessary to have good employee performance. Employee performance can increase if the factors within the company can.affect the performance of the employees themselves. Factors that can affect employee.performance are organizational culture, transformasional leadership, and work.motivation. This research was conducted at.PT. Telkom Ambon using multiple linear regression analysis method. It was found that the employees of PT. Telkom Ambon has an organizational culture, transformational leadership and work motivation that have a positive and significant.effect. The test of multiple linier regression.analysis found that organizational variables, transformational leadership and work motivation can affect employee performance.with a Coefficient of Determination (R2) of 0.832 or 83,2%.
Prediction of Life Expectancy in Maluku Province Using Backpropagation Artificial Neural Networks Yopi Andry Lesnussa; Francis Yunito Rumlawang; Endro Risamasu; Charlita Fhilya
Jurnal Matematika Integratif Vol 16, No 2: Oktober 2020
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (458.907 KB) | DOI: 10.24198/jmi.v16.n2.26606.75-82

Abstract

Life Expectancy at Birth (LE) is defined as the average estimated number of years a person can live to since their birth. The purpose of LE is to represent the health rate of a community. Backpropagation is an algorithm in artificial neural networks (ANN) used to predict or forecast data. This study aims to predict Life Expectancy in Moluccas. Based on the results of the analysis obtained an average forecasting success of 99.65% with the smallest error MAPE = 0,0035. Forecasting for the next 5 years shows that the Life Expectancy value tends to increase over the next 5 years from 2019-2023 at 65.7828 (2019) increasing to 66.6632 (2023).
Sistem Diagnosa Penyakit Dalam dengan Menggunakan Jaringan Saraf Tiruan Metode Backpropagation dan Learning Vector Quantization Zeth Arthur Leleury; Yopi Andry Lesnussa; Julianty Madiuw
Jurnal Matematika Integratif Vol 12, No 2: Oktober, 2016
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3161.337 KB) | DOI: 10.24198/jmi.v12.n2.11925.89-98

Abstract

Jaringan saraf tiruan telah banyak digunakan untuk membantu menyelesaikan berbagaimacam permasalahan dalam rangka pengambilan keputusan berdasarkan pelatihan yangdiberikan. Jaringan saraf tiruan dapat diaplikasikan pada berbagai bidang dalam kehidupanmanusia, salah satunya bidang kesehatan. Dalam penelitian ini, jaringan saraf tiruandigunakan untuk mendiagnosa Penyakit Dalam dengan menggunakan metode Backpropagationdan Learning Vector Quantization yang selanjutnya akan dibandingkan hasil diagnosa darikedua metode tersebut. Data penelitian sebanyak 266 data, dengan 190 data sebagai datapelatihan dan 76 data sebagai data pengujian yang diambil dari data pasien RSUD Dr. M.Haulussy, Ambon. Dengan menggunakan metode Backpropagation tingkat keakuratandiagnosanya sebesar 61.84% sedangkan dengan menggunakan metode LVQ tingkat keakuratandiagnosanya sebesar 93.42%. Dari hasil penelitian ini metode LVQ dianggap lebih baik dalammendiagnosa Penyakit Dalam.
A Stage-structure Leslie-Gower Model with Linear Harvesting and Disease in Predator Beay, Lazarus Kalvein; Leleury, Zeth Arthur; Rijoly, Monalisa E.; Lesnussa, Yopi Andry; Wattimena, Abraham Zacaria; Rahakbauw, Dorteus Lodewyik
Jambura Journal of Biomathematics (JJBM) Volume 4, Issue 2: December 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjbm.v4i2.22047

Abstract

The growth dynamics of various species are affected by various aspects. Harvesting interventions and the spread of disease in species are two important aspects that affect population dynamics and it can be studied. In this work, we consider a stage-structure Leslie–Gower model with linear harvesting on the both prey and predator. Additionally, we also consider the infection aspect in the predator population. The population is divided into four subpopulations: immature prey, mature prey, susceptible predator, and infected predator. We analyze the existences and stabilities of feasible equilibrium points. Our results shown that the harvesting in prey and the disease in predator impacts the behavioral of system. The situation in the system is more complex due to disease in the predator population. Some numerical simulations are given to confirm our results.
Numerical Solution Of The SIRV Model Using The Fourth-Order Runge-Kutta Method Rijoly, Monalisa E; Lesnussa, Yopi Andry; Sapulette, Nona Tjie
Jurnal Matematika Vol 13 No 2 (2023)
Publisher : Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JMAT.2023.v13.i02.p164

Abstract

This study aimed to predict the spread of the Covid-19 virus in Maluku Province using the fourth-order Runge-Kutta method. The mathematical model of the spread of the Covid-19 virus is a system of differential equations which includes Susceptible (S) variables, namely human subpopulations that are susceptible to Covid-19 virus infection, Infected (I), namely human subpopulations infected with the Covid-19 virus, Recovered (R) namely subpopulation of people who have recovered and Vaccination (V) namely a subpopulation that has been vaccinated and is immune to the Covid-19 virus, used as initial values. The values of are parameter values that are numerically solved by the fourth-order Runge-Kutta method performed for 24 literations with . Data were obtained from the Maluku Provincial Health Office from March 2022 - November 2022. Based on the data obtained, the average of the data is used as the initial value, where . The initial and parameter values were substituted into the numerical solution and simulated using Matlab. The rate value of each class for the next 24 months for the Susceptible (S), Infected (I), and Recovered (R) classes has decreased until it approaches zero equilibrium. It shows that the subpopulation of the three classes no longer exists, and the Vaccinated (V) class has increased significantly because almost all of the population has been vaccinated in the next 24 months. It shows that after an individual is vaccinated, he does not return to being vulnerable.
Symmetric Functions with Respect to a Point (a,b) and Its Properties that Generalized from Properties of Odd Functions Natasian, Nehemia Trianto; Lesnussa, Yopi Andry; Batkunde, Harmanus
Tensor: Pure and Applied Mathematics Journal Vol 5 No 1 (2024): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol5iss1pp9-16

Abstract

The function f: R \to R is said to be an odd function if f (-x) = -f(x) for every x \in R. The graph of an odd function is symmetry with respect to origin, or point (0,0) . The propose of this study is to observe some properties of symmetrical functions which are generalize from some properties of odd functions. Some of the results obtained include a linear combination of two functions symmetrical with respect to the point (a,b) is a functions of symmetrical with respect to the point (a,2b). An integral functions of symmetrical with respect to the point (a,b) on a closed interval [a-c,a+c] is 2bc for any real number c. Moreover product of scalars with functions of symmetrical with respect to the point (a,b) is a functions of symmetrical with respect to the point (a,\alpha b) for every \alpha real numbers. Furthermore the addition n-symmetrical of functions with respect to the point (a,b) is a series of functions of symmetrical with respect to the point (a,nb). he function is said to be an odd function if for every . The graph of an odd function is symmetry with respect to origin, or point . The propose of this study is to observe some properties of symmetrical functions which are generalize from some properties of odd functions. Some of the results obtained include a linear combination of two functions symmetrical with respect to the point is a functions of symmetrical with respect to the point . An integral functions of symmetrical with respect to the point on a closed interval is for any real number . Moreover product of scalars with functions of symmetrical with respect to the point is a functions of symmetrical with respect to the point for every real numbers. Furthermore the addition -symmetrical of functions with respect to the point is a series of functions of symmetrical with respect to the point .
Co-Authors Abdul Malik Balami Abraham Z Wattimena Abraham Z. Wattimena Abraham Zakaria Wattimena Abraham Zakharia Wattimena Abrahams, H. Apituley, Fredrylo Alberth Noel Joddy Astrid A Titahena Astrid G. Heumasse Aulele, Salmon Notje Batkunde, Harmanus Beay, Lazarus Kalvein C. G. Mustamu Charlita Fhilya Chrisani Waas Citra Fathia Palembang D Patty D. L. Rahakbauw Damani, Nur Mila Dewi Ls Djaelani, Eka Desi Kirana E R Persulessy E. R. Persulessy Elvinus P. Persulessy Endro Risamasu F. Kondo Lembang Fauzan Samallo Fhilya, Charlitta Filiany S. Tutupary H. Kelian H. Lellolsima H. W. M. Patty Hayoto, Sasmita Hernita, Hernita Hukubun, V Idah, Mus Rika Ilwaru, Venn Y. I. Ilwaru, Venn Yan Ishak Jaariyah, Muhidin Jefri Esna Thomas Radjabaycolle Johan Bruiyf Bension Julianty Madiuw Lakotany, Jemsry E. Larubun, Swine Enggelina Latumeten, Ralf Leleury, Zeth A. Lewaherilla, Norisca Lexy Jansen Sinay Lexy Janzen Sinay, Lexy Janzen M. S. Noya Van Delsen M. W. Talakua M. W. Talakua Madiuw, Julianty Marsudi Marsudi Matdoan, M Y Mozart W. Talakua Muhammad Y. Matdoan Muhammad Yahya Matdoan Muhammad Yahya Matdoan Munahaji Lukaraja Mus Rika Idah Nanang Ondi Natasian, Nehemia Trianto Noya van Delsen, Marlon S. Noya van Delzen, Marlon Stivo Nurhidayah Nurhidayah Ojo, Mayowa Micheal Ondi, Nanang Papalia, Anita Patty, Henry Willyam Michel Persulessy, Elvinus R. Peter, Olumuyiwa James R. J. Djami Rahakbauw, Dorteus L. RAHAKBAUW, DORTEUS LODEWYIK Rijoly, Monalisa E Rijoly, Monalisa E. Rijoly, Monalissa E Ronald John Djami Rukua, Abdul Wahid Rumalowak, Diana Rumata, Umi Sari Rumfot, Rindyani Rumlawang, F Y Rumlawang, Francis Y RUMLAWANG, FRANCIS YUNITO Sahusilawane, Maria Engeline Saija, Maryone Salamahu, Leberima Sapulette, Nona Tjie Set Sasake Sinay, Lexy Jansen Stevanny Tamaela Subchan Subchan Subchan, Subchan Sumah, Tesa Tahalea, Sylvert Prian Talakua, Mozart W. Talakua, Mozart Winston Tamaela, Stevanny Tentua, Jesica Tomasouw, Berni Pebo Tomasouw, Berny Pebo Tuanaya, Adis Harni Venn Y.I. Ilwaru Vynska Amalia Permadi Waas, Rethalina Warong, Maria Marlein Wattimena, Abraham Zacaria Wattimury, Welminci W Yulia S. Kakisina Zakheus Putlely Zeth Arthur Leleury, Zeth Arthur