Claim Missing Document
Check
Articles

Numerical Solution Of The SIRV Model Using The Fourth-Order Runge-Kutta Method Rijoly, Monalisa E; Lesnussa, Yopi Andry; Sapulette, Nona Tjie
Jurnal Matematika Vol 13 No 2 (2023)
Publisher : Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JMAT.2023.v13.i02.p164

Abstract

This study aimed to predict the spread of the Covid-19 virus in Maluku Province using the fourth-order Runge-Kutta method. The mathematical model of the spread of the Covid-19 virus is a system of differential equations which includes Susceptible (S) variables, namely human subpopulations that are susceptible to Covid-19 virus infection, Infected (I), namely human subpopulations infected with the Covid-19 virus, Recovered (R) namely subpopulation of people who have recovered and Vaccination (V) namely a subpopulation that has been vaccinated and is immune to the Covid-19 virus, used as initial values. The values of are parameter values that are numerically solved by the fourth-order Runge-Kutta method performed for 24 literations with . Data were obtained from the Maluku Provincial Health Office from March 2022 - November 2022. Based on the data obtained, the average of the data is used as the initial value, where . The initial and parameter values were substituted into the numerical solution and simulated using Matlab. The rate value of each class for the next 24 months for the Susceptible (S), Infected (I), and Recovered (R) classes has decreased until it approaches zero equilibrium. It shows that the subpopulation of the three classes no longer exists, and the Vaccinated (V) class has increased significantly because almost all of the population has been vaccinated in the next 24 months. It shows that after an individual is vaccinated, he does not return to being vulnerable.
Symmetric Functions with Respect to a Point (a,b) and Its Properties that Generalized from Properties of Odd Functions Natasian, Nehemia Trianto; Lesnussa, Yopi Andry; Batkunde, Harmanus
Tensor: Pure and Applied Mathematics Journal Vol 5 No 1 (2024): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol5iss1pp9-16

Abstract

The function f: R \to R is said to be an odd function if f (-x) = -f(x) for every x \in R. The graph of an odd function is symmetry with respect to origin, or point (0,0) . The propose of this study is to observe some properties of symmetrical functions which are generalize from some properties of odd functions. Some of the results obtained include a linear combination of two functions symmetrical with respect to the point (a,b) is a functions of symmetrical with respect to the point (a,2b). An integral functions of symmetrical with respect to the point (a,b) on a closed interval [a-c,a+c] is 2bc for any real number c. Moreover product of scalars with functions of symmetrical with respect to the point (a,b) is a functions of symmetrical with respect to the point (a,\alpha b) for every \alpha real numbers. Furthermore the addition n-symmetrical of functions with respect to the point (a,b) is a series of functions of symmetrical with respect to the point (a,nb). he function is said to be an odd function if for every . The graph of an odd function is symmetry with respect to origin, or point . The propose of this study is to observe some properties of symmetrical functions which are generalize from some properties of odd functions. Some of the results obtained include a linear combination of two functions symmetrical with respect to the point is a functions of symmetrical with respect to the point . An integral functions of symmetrical with respect to the point on a closed interval is for any real number . Moreover product of scalars with functions of symmetrical with respect to the point is a functions of symmetrical with respect to the point for every real numbers. Furthermore the addition -symmetrical of functions with respect to the point is a series of functions of symmetrical with respect to the point .
PEAR MATHEMATICAL MODEL ON ONLINE GAME ADDICTION Damani, Nur Mila; Patty, Henry W. M.; Lesnussa, Yopi Andry
Jurnal Sains Dasar Vol 13, No 1 (2024): April 2024
Publisher : Faculty of Mathematics and Natural Science, Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jsd.v13i1.70690

Abstract

Online game addiction is a mental disorder seen from the urge to play online games to forget time and even ignore other activities and responsibilities such as work and school assignments. This research discusses the PEAR mathematical model of online game addiction. This research aims to construct, analyze the equilibrium point and simulate the PEAR model of online game addiction. From the research results, the construction of the PEAR mathematical model has been obtained. The results of the equilibrium point analysis and stability found two equilibrium points, namely the addiction-free equilibrium point and the endemic equilibrium point. Based on the results of analysis and numerical simulation of the PEAR mathematical model of online game addiction using Python software, it is obtained that the Potential sub-population has decreased in the 5th month, the Exposed sub-population decreased in the 10th month, the Recovered sub-population has increased individuals from the Exposed sub-population so that there is an increase in individuals until the 2nd month. However, there was a decreased number of individuals until the 10th month, and all Addicted sub-populations entered the Recovered sub-population in the 12th month, so this sub-population has increased
STABILITY ANALYSIS OF A MATHEMATICAL MODEL OF RABIES SPREAD WITH VACCINATION IN HUMAN AND DOG POPULATIONS, INCLUDING AWARE AND UNAWARE EXPOSED SUBPOPULATIONS Sahusilawane, Maria Engeline; Ilwaru, Venn Yan Ishak; Lesnussa, Yopi Andry; Beay, Lazarus Kalvein; Ojo, Mayowa Micheal; Permadi, Vynska Amalia; Peter, Olumuyiwa James
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp861-878

Abstract

Rabies is a zoonotic disease that causes progressive and fatal inflammation of the brain and spinal cord, which can be prevented by vaccination. This study aims to analyze the stability of a mathematical model of rabies disease spread with vaccination in human and dog populations in Maluku Province. The model uses a system of ordinary differential equations that separates the human population into six subpopulations (6 variables) and the dog population into three subpopulations (3 variables). The new variables are unaware subpopulations that we divide from aware subpopulations. The results showed that disease-free and endemic equilibrium points could be achieved, and the stability of these equilibrium points was analyzed using basic reproduction numbers Both disease-free and endemic equilibrium points are locally asymptotically stable. The Numerical simulations were also conducted to determine the characteristics of each subpopulation. This study was to provide better insight into controlling the spread of rabies in Maluku Province and it can be used as a reference in developing mathematical models for other infectious diseases.
PERBANDINGAN ALGORITMA HILL CLIMBING DAN ALGORITMA ANT COLONY DALAM PENENTUAN RUTE OPTIMUM Ilwaru, Venn Y. I.; Sumah, Tesa; Lesnussa, Yopi Andry; Leleury, Zeth A.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 11 No 2 (2017): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (409.706 KB) | DOI: 10.30598/barekengvol11iss2pp139-150

Abstract

Optimasi adalah pencarian nilai-nilai variabel yang dianggap optimal untuk mencapai hasil yang diinginkan. Untuk memecahkan masalah optimasi tersebut, tentunya diperlukan algoritma yang handal. Algoritma Hill Climbing dan Algotrima Ant Colony adalah metode dari sekian banyak metode kecerdasan buatan untuk menyelesaikan permasalahan optimasi. Karena algoritmanya yang cukup sederhana, metode Hill Climbing telah banyak diterapkan dalam berbagai aplikasi. Disamping itu metode Hill Climbing juga mengefisienkan penggunaan memori yang besar. Algoritma Ant Colony adalah algoritma yang diadopsi dari perilaku koloni semut. Secara alamiah koloni semut mampu menemukan rute terpendek dalam perjalanan dari sarang ke tempat-tempat sumber makanan, berdasarkan jejak kaki pada lintasan yang telah dilewati. Dari hasil penelitian yang dilakukan dengan menggunakan algoritma Hill Climbing dan Algoritma Ant Colony diperoleh rute optimum ferry di Pulau Ambon, Pulau Seram, dan Pulau-Pulau Lease yang berbeda. Pada Algoritma Hill Climbing diperoleh rute yang optimal yaitu Tulehu – Wainama – Umeputih – Wailey – Amahai - Nalahia dengan jarak tempuh 126 Km, sedangkan menggunakan Algoritma Ant Colony diperoleh rute yang optimal yaitu Tulehu – Wainama – Umeputih – Wailey – Amahai – Nalahia - Tulehu dengan jarak tempuh 197 Km
KAJIAN TENTANG PENDAPAT PELANGGAN PLN DI DESA PASSO DAN DESA RUMAH TIGA TERHADAP LISTRIK PRABAYAR DENGAN METODE ANALISIS VARIANSI Talakua, Mozart W.; Abrahams, H.; Lesnussa, Yopi Andry
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 12 No 1 (2018): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (254.144 KB) | DOI: 10.30598/vol12iss1pp17-26ar360

Abstract

Listrik prabayar adalah inovasi terbaru dari layanan PLN. Pada sistem listrik prabayar, pelanggan mengeluarkan biaya awal untuk membeli energi listrik yang akan dikonsumsinya sehingga bisa mengendalikan sendiri penggunaan listrik sesuai kebutuhan dan kemampuan pelanggan. Permasalahan yang ingin dikaji adalah apakah terdapat perbedaan pendapat masyarakat terhadap listrik prabayar. Penelitian ini diarahkan untuk menganalisis pendapat pelanggan PLN yang berada di Desa Passo dan Desa Rumah Tiga. Metode yang digunakan dalam penelitian ini adalah Analisis Variansi. Data yang digunakan dalam penelitian merupakan data primer dengan jumlah sampel yang diambil adalah 100 yang terdiri dari 50 responden di Desa Passo dan 50 responden Desa Rumah Tiga. Hasil penelitian menunjukkan bahwa untuk Desa Passo probabilitas hitung yaitu >0,05 maka 𝐻0 di terima. Artinya tidak terdapat perbedaan rata-rata pendapat masyarakat Desa Passo terhadap listrik prabayar terhadap faktor kebebasan, faktor kemudahan, faktor sosialisasi, faktor harga, dan faktor kenyamanan, dan untuk Desa Rumah Tiga probabilitas hitung yaitu > 0,05 maka 𝐻0 di terima. Artinya tidak terdapat perbedaan rata-rata pendapat masyarakat Desa Passo terhadap listrik prabayar terhadap faktor kebebasan, faktor kemudahan, faktor sosialisasi, faktor harga, dan faktor kenyamanan.
PERAMALAN JUMLAH PELANGGAN TELEPON BERBAYAR TAHUN 2017 DENGAN MENGGUNAKAN MODEL ARIMA(𝐩, 𝐝, 𝐪) Rahakbauw, Dorteus L.; Lesnussa, Yopi Andry; Waas, Rethalina
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 12 No 1 (2018): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (268.4 KB) | DOI: 10.30598/vol12iss1pp43-52ar363

Abstract

Pertumbuhan pertelekomunikasian dapat dilihat dari perkembangan jumlah pelanggan telepon berbayar. Peningkatan kesejahteraan masyarakat seiring dengan perkembangan telekomunikasi itu, dapat ditunjukan oleh beberapa indikator yang dapat digunakan oleh para pengambil kebijakan untuk menentukan strategi pembangunan yang terkait dengan pertelekomunikasian secara nasional maupun regional. Penelitian ini menggunakan model ARIMA(𝑝, 𝑑, 𝑞) dan software Minitab 16. Metode ARIMA sendiri merupakan suatu metode peramalan terbaik untuk perhitungan jangka pendek. Model yang didapat dalam penelitian ini adalah ARIMA(1,1,1) dengan koefisien parameternya adalah 1 φ = 0.8895, 1 θ = 0.9783 dan 0β = -11.757.
PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DI PINTU KEDATANGAN BANDAR UDARA INTERNASIONAL PATTIMURA AMBON DENGAN MENGGUNAKAN METODE ARIMA BOX-JENKINS Hayoto, Sasmita; Lesnussa, Yopi Andry; Patty, Henry W. M.; Djami, Ronald John
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 13 No 3 (2019): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (164.997 KB) | DOI: 10.30598/barekengvol13iss3pp135-144ar883

Abstract

The Autoregressive Integrated Moving Average (ARIMA) model is often used to forecast time series data. In the era of globalization, rapidly progressing times, one of them in the field of transportation. The aircraft is one of the transportation that the residents can use to support their activities, both in business and tourism. The objective of the research is to know the forecasting of the number of passengers of airplanes at the arrival gate of Pattimura Ambon International Airport using ARIMA Box-Jenkins method. The best model selection is ARIMA (0, 1, 3) because it has significant parameter value and MSE value is smaller.
APLIKASI ALGORITMA BACKTRACKING UNTUK MENENTUKAN RUTE OPTIMAL DISTRIBUSI AIR ISI ULANG GONZALO DI KOTA AMBON Lakotany, Jemsry E.; Persulessy, Elvinus R.; Lesnussa, Yopi Andry
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 1 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1113.161 KB) | DOI: 10.30598/barekengvol14iss1pp059-068

Abstract

Distribution is a delivery of goods from an original area to the destination area, wherein the distribution, the problem of travel routes is very important because it can affect the time and cost of doing the distribution. The optimal route itself is a route that minimizes the distance and travel time. This research using the Backtracking Algorithm as part of the Traveling salesman problem method in finding the shortest route or minimum distance. In this research, the Backtracking algorithm is applied to search the minimum route for Gonzalo refill water distribution. The results obtained are the path with the shortest route in Ambon City, such as: Gonzalo - Jln. Karang Panjang - Jln. Pitu ina - Jln. Dr. Kayadoe - Terminal mardika - Jln. Wr. Supratman - Jln. A.Y. Patty - Jln. Said Commands - Jln. Pattimura - Jln A. Yani - Gonzalo, with a long of travel route is 15,301 Km.
OPTIMASI BIAYA DISTRIBUSI BERAS MISKIN (RASKIN) MENGGUNAKAN MASALAH TRANSPORTASI TAK SEIMBANG Ilwaru, Venn Yan Ishak; Lesnussa, Yopi Andry; Tentua, Jesica
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 4 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (735.262 KB) | DOI: 10.30598/barekengvol14iss4pp609-618

Abstract

Rice is the staple food for the majority of Indonesian population. As the population increases, the need for rice also increases. Rice distribution is very important in terms of budget and time efficiency. The purpose of this research was to minimize the distribution costs of poor rice (RASKIN) by using the ASM (Abdul, Shaleh, Maliki) modification method, so that the distribution costs obtained were optimal. This research was conducted at Perum BULOG Ambon Sub Divre Maluku. Based on the research results, it shows that by using the ASM modification method the distribution costs incurred by Perum BULOG Ambon Sub Divre Maluku is Rp. 1,091,121,022.
Co-Authors Abdul Malik Balami Abraham Z Wattimena Abraham Z. Wattimena Abraham Zacaria Wattimena Abraham Zakaria Wattimena Abraham Zakharia Wattimena Abrahams, H. Apituley, Fredrylo Alberth Noel Joddy Astrid A Titahena Astrid G. Heumasse Aulele, Salmon Notje Batkunde, Harmanus Beay, Lazarus Kalvein C. G. Mustamu Charlita Fhilya Chrisani Waas Citra Fathia Palembang D Patty D. L. Rahakbauw Damani, Nur Mila Dewi Ls E R Persulessy E. R. Persulessy Elvinus P. Persulessy Endro Risamasu F. Kondo Lembang Fauzan Samallo Fhilya, Charlitta Filiany S. Tutupary H. Kelian H. Lellolsima H. W. M. Patty Hayoto, Sasmita Hukubun, V Idah, Mus Rika Ilwaru, Venn Y. I. Ilwaru, Venn Yan Ishak Jefri Esna Thomas Radjabaycolle Johan Bruiyf Bension Julianty Madiuw Lakotany, Jemsry E. Larubun, Swine Enggelina Latumeten, Ralf Lazarus Kalvein Beay Leleury, Zeth A. Lexy Jansen Sinay M. S. Noya Van Delsen M. W. Talakua M. W. Talakua Madiuw, Julianty Marlon Stivo Noya van Delzen Mozart W. Talakua Muhammad Y. Matdoan Muhammad Yahya Matdoan Muhammad Yahya Matdoan Munahaji Lukaraja Mus Rika Idah Nanang Ondi Natasian, Nehemia Trianto Noya van Delsen, Marlon S. Nurhidayah Nurhidayah Ojo, Mayowa Micheal Ondi, Nanang Papalia, Anita Patty, Henry Willyam Michel Persulessy, Elvinus R. Peter, Olumuyiwa James R. J. Djami Rahakbauw, Dorteus L. RAHAKBAUW, DORTEUS LODEWYIK Rijoly, Monalisa E Rijoly, Monalisa E. Rijoly, Monalissa E Ronald John Djami Rumlawang, F Y Rumlawang, Francis Y RUMLAWANG, FRANCIS YUNITO Sahusilawane, Maria Engeline Sapulette, Nona Tjie Set Sasake Sinay, Lexy Jansen Stevanny Tamaela Subchan Subchan Subchan, Subchan Sumah, Tesa Tahalea, Sylvert Prian Talakua, Mozart W. Talakua, Mozart Winston Tamaela, Stevanny Tentua, Jesica Tomasouw, Berny Pebo Umi Sari Rumata Venn Y.I. Ilwaru Vynska Amalia Permadi Waas, Rethalina Warong, Maria Marlein Wattimena, Abraham Zacaria Yulia S. Kakisina Zakheus Putlely Zeth Arthur Leleury, Zeth Arthur