p-Index From 2021 - 2026
4.931
P-Index
This Author published in this journals
All Journal Jurnal Indo-Islamika Madrasah: Jurnal Pendidikan dan Pembelajaran Dasar Jurnal Informatika Upgris Jurnal Pilar Nusa Mandiri JOURNAL OF APPLIED INFORMATICS AND COMPUTING JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Sisfokom (Sistem Informasi dan Komputer) JURNAL SYARIKAH : JURNAL EKONOMI ISLAM Jurnal Pemberdayaan: Publikasi Hasil Pengabdian Kepada Masyarakat Jurnal Tabarru': Islamic Banking and Finance GERVASI: Jurnal Pengabdian kepada Masyarakat DIKEMAS (Jurnal Pengabdian Kepada Masyarakat) Jurnal Respirasi (JR) World Nutrition Journal Jurnal Abdi Insani Indonesian Journal of Electrical Engineering and Computer Science Infotek : Jurnal Informatika dan Teknologi Infotech: Journal of Technology Information Indonesian Journal of Sociology, Education and Development (IJSED) Journal of Environmental Science Sustainable Kosala : Jurnal Ilmu Kesehatan Jurnal Riset dan Aplikasi Mahasiswa Informatika (JRAMI) Media Publikasi Promosi Kesehatan Indonesia (MPPKI) Jurnal Ilmu Kesehatan Indonesia (JIKSI) The Indonesian Journal of Gastroenterology, Hepatology and Digestive Endoscopy Proceeding of International Conference Health, Science And Technology (ICOHETECH) Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Innovative: Journal Of Social Science Research Bengawan :Jurnal Pengabdian Masyarakat SmartComp Neurona Proceeding of International Conference on Humanity Education and Society Preventif : Jurnal Kesehatan Masyarakat
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOURNAL OF APPLIED INFORMATICS AND COMPUTING

Personal Protective Equipment Completeness Monitoring System Using YOLO-Based Computer Vision Akmal, Baasith Khoiruddin; Lestari, Wiji; Pradana, Afu Ichsan
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.10172

Abstract

Workplace safety in the construction sector remains a critical concern, primarily due to low compliance with Personal Protective Equipment (PPE) standards. To address this, this study develops and evaluates a real-time PPE monitoring system, conducting a comparative analysis of two state-of-the-art object detection models: YOLOv8s and YOLOv11s. The system is designed to detect three essential PPE items: helmets, masks, and vests, and both models were trained on a custom dataset of 9,202 augmented images over 200 epochs. The final evaluation on an unseen test set revealed highly competitive performance. While YOLOv8s achieved a marginally higher mAP@0.5 (90.8%), YOLOv11s demonstrated superior precision (92.0%) and better performance on the stricter mAP@0.5:0.95 metric (54.4%). Based on this nuanced trade-off and its significantly higher computational efficiency (15% fewer parameters), YOLOv11s was selected as the optimal model. The chosen model achieved a real-time inference speed of approximately 112 FPS. A functional web-based prototype was developed using Flask to demonstrate the system's practical application. These findings confirm that YOLOv11s offers a more balanced and efficient solution for automating PPE compliance monitoring and highlight that a holistic evaluation beyond a single metric is crucial for deploying robust computer vision systems in real-world safety applications.