Claim Missing Document
Check
Articles

Found 35 Documents
Search

Pelatihan Google Workspace untuk Peningkatan Kapasitas Anggota Mission 21 Asia dalam Pengolahan Data Kegiatan dan Alumni Chrisantyo, Lukas; Chrismanto, Antonius Rachmat; Wibowo, Wahju Satria; Delima, Rosa; Lukito, Yuan
Jurnal Atma Inovasia Vol. 4 No. 2 (2024)
Publisher : Lembaga Penelitian dan Pengabdian pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jai.v4i2.8227

Abstract

Mission 21 Asia merupakan organisasi kemasyarakatan yang berpusat Basel, Switzerland. Mission 21 memiliki berbagai program pelatihan untuk pengembangan diri baik bagi anggota maupun masyarakat umum. Saat ini belum dilakukan pengolahan data yang terstuktur dan tersistem untuk program pelatihan yang telah dilaksanakan. Kebutuhan pengelolaan data hasil pelatihan yang rutin diadakan oleh suatu institusi menjadi hal yang diperlukan untuk evaluasi dan pengukuran kinerja hasil pelatihan. Selain itu pengelolaan data alumni dari sebuah program pelatihan sangat dibutuhkan untuk memudahkan proses pencarian data. Berdasarkan kebutuhan tersebut Mission 21 Asia dituntut untuk memanfaatkan teknologi informasi untuk membantu pengelolaan data alumni dan mitra mereka yang tersebar di berbagai daerah di Indonesia. Fakultas Teknologi Informasi Universitas Kristen Duta Wacana (FTI UKDW) bekerjasama dengan Mission 21 Asia memberikan pelatihan dan pendampingan pengelolaan data menggunakan Google Workspace mulai dari teori hingga implementasi. Materi pelatihan meliputi pemanfaatan Google Forms, pengelolaan data dilakukan baik secara online maupun onsite melalui aplikasi pengolah data, hingga mengembangkan sebuah aplikasi dashboard sederhana yang bisa dimanfaatkan secara langsung oleh para mitra Mission 21. Hasil pelatihan adalah peningkatan kemampuan peserta untuk membuat sistem data base alumni berdasarkan kebutuhan informasi yang diharapkan. Peserta memahami bagaimana mengolah informasi alumni melalui pengembangan sistem manajemen alumni.
Pelatihan Persiapan Olimpiade Sains Nasional Bidang Komputer Untuk Siswa SMA Pangudi Luhur Yogyakarta Lukito, Yuan; Chrismanto, Antonius Rachmat; Wibowo, Argo; Delima, Rosa; Santosa, Raden Gunawan; Haryono, Nugroho Agus; Wijana, Katon
GIAT : Jurnal Teknologi untuk Masyarakat Vol. 3 No. 1 (2024): Mei 2024
Publisher : Program Studi Sistem Informasi Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/giat.v3i1.9166

Abstract

Kompetisi Olimpiade Sains Nasional (OSN) yang rutin diselenggarakan setiap tahunnya membutuhkan persiapan dari siswa-siswa sekolah yang ingin mengikuti kompetisi tersebut.  SMA Pangudi Luhur Yogyakarta ingin mengikuti kompetisi tersebut dengan mengirimkan beberapa siswanya, sehingga membutuhkan pelatihan OSN untuk siswa-siswanya. Tim PKM dari Fakultas Teknologi Informasi bersedia untuk mengadakan pelatihan OSN dengan menyiapkan materi-materi dengan topik algoritma, logika dan aritmatika sesuai dengan silabus OSN.  Pelatihan dilaksanakan selama 14 pertemuan di kampus Universitas Kristen Duta Wacana.  Pelatihan tersebut telah berhasil dilaksanakan dengan baik dan berhasil memenuhi kebutuhan dari pihak sekolah. Pada materi algoritma didapatkan peningkatan rata-rata nilai post-test terhadap rata-rata nilai pre-test, yaitu meningkat dari 57,14 menjadi 97,14. Hasil evaluasi dari pelaksanaan pelatihan ini secara umum sudah baik dan sesuai kebutuhan, walaupun ada beberapa permasalahan seperti jadwal pelatihan yang terpaksa mundur dan tingkat partisipasi siswa yang makin menurun pada beberapa pertemuan akhir.
Building a Mobile Reporting Dashboard System Based on Android Using Web Service Restful for Congregation Data Dody Ivana; Budi Susanto; Yuan Lukito
International Journal of Information Technology and Business Vol. 4 No. 2 (2022): April: International Journal of Information Technology and Business
Publisher : Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24246/ijiteb.422022.01-15

Abstract

The development of the Church is increasingly growing marked by the increasing number of people who attend the church. The church needs to utilize technology in paying attention to spiritual growth in existing congregations. But to do that, there needs to be a system that can see data that is well visualized and can be used by the church. It is not easy to visualize data manually so a practical and portable system is needed. The purpose of this study is as a material consideration in seeing the development of the Church in the Church and improve efficiency without having to use a computer. The process of gathering congregational data comes from the data warehouse of the Indonesian Christian Church Synod in the Central Java Region which is obtained from the Church Information System called SISWA which is local in every church. The interface design process is also carried out using User Centered Design which is centered on the user. This system will be designed using Resrful web Service which has better capabilities than other web services. By building this system, it can facilitate the church in seeing the development of the church and can be taken into consideration in making decisions by the church.
Analisis Kinerja Support Vector Machine dan Moving Averages Convergence Divergence Untuk Saham-Saham Perbankan Indonesia Purnama, Andreas Anditya; Lukito, Yuan; Haryono, Nugroho Agus
Jurnal Komtika (Komputasi dan Informatika) Vol 9 No 1 (2025)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/komtika.v9i1.13459

Abstract

This study discusses the Machine Learning algorithm with technical indicator features in predicting the movement of Indonesian banking sector stocks. Many people seek profit in Indonesian banking stocks because most of them have good fundamentals but have high volatility. The strategy that can be used is the Support Vector Machine (SVM) algorithm with the Moving Averages Convergence Divergence (MACD) technical indicator feature. The SVM algorithm is used because it can process stock price movement data and technical indicators which tend to be complex. This research was conducted with the aim of contributing to the development of a machine learning-based stock prediction model that can be used by academics and financial practitioners. The research stages are collecting historical data on Infobank15 stock movements, data cleaning, training and testing the SVM model, then backtesting. The research methodology includes data processing using Python, training and testing the SVM model, then trading simulation with an initial capital of IDR 100 million. The kernels tested include RBF, Polynomial, and Sigmoid. Model performance is evaluated based on return, win rate, profit ratio, Sharpe ratio, maximum drawdown, risk-reward ratio, and accuracy rate. Historical data of Infobank15 stock is used in this study where the dataset is historical data from 2019-2024 for training and testing the model and historical data from 2024 for backtesting. Based on the experimental results obtained, it can be concluded that the combination of the SVM model and the MACD indicator yields favourable outcomes. The kernel that provides the best overall results is the Polynomial kernel. Penelitian ini membahas penerapan Machine Learning dengan fitur indikator teknikal dalam memprediksi pergerakan saham sektor perbankan Indonesia. Banyak masyarakat mencari keuntungan di saham perbankan Indonesia karena sebagian besar memiliki fundamental yang baik, namun memiliki volatilitas yang tinggi. Strategi yang dapat digunakan yaitu algoritma Support Vector Machine (SVM) dengan fitur indikator teknikal Moving Averages Convergence Divergence (MACD). Algoritma SVM dipakai karena dapat mengolah data-data pergerakan harga saham dan indikator teknikal yang di mana cenderung kompleks. Riset ini dilakukan dengan tujuan berkontribusi pada pengembangan model prediksi saham berbasis Machine Learning yang dapat digunakan oleh akademisi dan praktisi keuangan. Tahapan risetnya yaitu pengumpulan data historis pergerakan saham Infobank15, pembersihan data, pelatihan dan pengujian model SVM, kemudian backtesting. Metodologi risetnya meliputi pengolahan data menggunakan Python, pelatihan dan pengujian model SVM, kemudian simulasi trading. Kernel yang diuji antara lain Radial Basis Function, Polynomial, dan Sigmoid. Kinerja model dievaluasi berdasarkan return, win-rate, profit ratio, sharpe ratio, maximum drawdown, risk-reward ratio, dan accuracy rate. Data historis saham Infobank15 digunakan dalam penelitian ini adalah tahun 2019-2024 untuk pelatihan dan pengujian model serta data historis 2024 untuk backtesting. Dari hasil percobaan yang telah dilakukan, dapat disimpulkan bahwa kombinasi model SVM dan indikator MACD memberikan hasil yang baik. Kernel yang memberikan hasil terbaik secara keseluruhan adalah Polynomial.
Analisis indikator Bollinger Bands, Stochastics dan Relative-Strength Index Untuk Prediksi Pergerakan Gold Futures Berbasis Deep Learning Gabriel, Evander; Lukito, Yuan; Haryono, Nugroho
Jurnal Algoritma Vol 22 No 2 (2025): Jurnal Algoritma
Publisher : Institut Teknologi Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33364/algoritma/v.22-2.2264

Abstract

Gold futures price predictions are challenging due to high volatility and its role as a safe-haven asset influenced by global political and economic conditions. The right trading strategy is needed to take advantage of price fluctuations, one of which is through technical, fundamental, sentiment, and machine learning analysis. This study analyzes the effectiveness of technical indicators Bollinger Bands (BB), Stochastic Oscillator (STOCH), and Relative Strength Index (RSI) in predicting Gold Futures prices using the Deep Learning Long Short-Term Memory (LSTM) model. The research data consists of ±40,000 Gold Futures prices from Yahoo Finance, which are divided into training, validation, and test data using the sliding window method (20% shift from 0%–60%). Model performance is evaluated through Return, Real, Trade, Win-rate, and Profit-factor using back testing in Metatrader 5 (100 leverage). The results show that the LSTM model with BB features (period 20, deviation 2) produced the highest average return of $100.48, a win rate of 32.53%, and a profit factor of 2.30. The second-best model used a combination of the three indicators with an average return of $98.033, a win rate of 30.96%, and a profit factor of 2.12.