Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal Of Chemical Process Engineering

Circular Economy-based Food Technology: Enhancing Red Dragon Fruit Jam Quality according to SNI 3746-2008 Fia Lestari, Mega; Ismail, Nur Afia; Khaerunnisa, Munira; Nur Amri, Azhari; Nur Fuady, Muhammad Ikram; Utami, Hermin Hardyanti; Yusriadi, Yusriadi
Journal of Chemical Process Engineering Vol. 8 No. 2 (2023): Journal of Chemical Process Engineering
Publisher : Fakultas Teknologi Industri - Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/jcpe.v8i2.882

Abstract

Circular economy-based food technology innovation plays important role in overcoming environmental and sustainability challenges. This study aims to improve the quality of red dragon fruit (Hylocereus polyrhizus) jam by adding its peel, in line with SNI 3746-2008. The study will also explore the application of circular economy principles in the jam production process. This research uses both quantitative and qualitative methods, including Total Plate Count tests, organoleptic tests (condition and hedonic), fibre tests, moisture content tests, and literature reviews. The research results show that the addition of red dragon fruit peel improves the quality of the jam, with a Total Plate Count that meets standards, making it safe for consumption at 3.6x10² Colony/g. Three parameters typically state the organoleptic acceptance level for condition tests as normal: colour (97%), odor (65%), and taste (74%). The hedonic test showed that the panelists liked the colour of the jam (7) and somewhat liked the odor and taste of the jam (6). The addition of red dragon fruit peel confirmed the positive fibre content. However, the panelists slightly disliked the jam's texture (4) due to its high moisture content (48.6%), indicating the need for improvement. From a circular economy perspective, this contributes to reducing biomass waste, utilising resources efficiently, increasing the added value of products, and providing a positive social and economic impact. This research's limitations include variations in raw material formulation that affect the final results, as well as the need for further studies to optimise moisture content and improve organoleptic test results.
Optimisation of Biodegradable Plastic from Cassava Peel Starch with Additional Materials of Sugarcane Bagasse Cellulose Rahim, Herlina; Masda, Raehana Ramadhani; Al Adawiyah, Syardah Ugra; Lestari, Mega Fia
Journal of Chemical Process Engineering Vol. 9 No. 3 (2024): Special Issue
Publisher : Fakultas Teknologi Industri - Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/jcpe.v9i3.1488

Abstract

The use of plastic in large quantities causes environmental pollution because it is not easily decomposed. One way to overcome this is to make bioplastics from natural materials that are easily decomposed such as cassava peel starch. However, the use of starch in making bioplastics still has low mechanical properties. Therefore, cellulose is added as an additive to improve the mechanical properties of bioplastics. This study investigated the potential of cassava peel starch modified with bagasse cellulose as a base material for bioplastics. The aim is to improve the mechanical performance and biodegradability of bioplastics to reduce the environmental impact of conventional plastics. The resulting bioplastics were evaluated based on water absorption, biodegradability, tensile strength, elongation, and elastic modulus tests. Variations in cellulose content showed a significant effect on the physical and mechanical properties of bioplastics. The addition of 18% cellulose provided the best water resistance, while 3% cellulose content resulted in the highest biodegradability. Optimal mechanical properties were achieved at 9% cellulose addition, with a tensile strength of 10.48 N/mm², elongation of 7.92%, and elastic modulus of 3.43 N/mm². However, these results are still below the standards for environmentally friendly plastics based on SNI 7188.7:2016 and SNI 7818:2014, which set higher parameters for water resistance, tensile strength, and elasticity. This bioplastic has the main advantage of being easily biodegradable, making it a potential alternative for certain applications.