Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Advances in Intelligent Informatics

Multidisciplinary classification for Indonesian scientific articles abstract using pre-trained BERT model Antonius Angga Kurniawan; Sarifuddin Madenda; Setia Wirawan; Ruddy J. Suhatril
International Journal of Advances in Intelligent Informatics Vol 9, No 2 (2023): July 2023
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v9i2.1051

Abstract

Scientific articles now have multidisciplinary content. These make it difficult for researchers to find out relevant information. Some submissions are irrelevant to the journal's discipline. Categorizing articles and assessing their relevance can aid researchers and journals. Existing research still focuses on single-category predictive outcomes. Therefore, this research takes a new approach by applying a multidisciplinary classification for Indonesian scientific article abstracts using a pre-trained BERT model, showing the relevance between each category in an abstract. The dataset used was 9,000 abstracts with 9 disciplinary categories. On the dataset, text preprocessing is performed. The classification model was built by combining the pre-trained BERT model with Artificial Neural Network. Fine-tuning the hyperparameters is done to determine the most optimal hyperparameter combination for the model. The hyperparameters consist of batch size, learning rate, number of epochs, and data ratio. The best hyperparameter combination is a learning rate of 1e-5, batch size 32, epochs 3, and data ratio 9:1, with a validation accuracy value of 90.8%. The confusion matrix results of the model are compared with the confusion matrix results by experts. In this case, the highest accuracy result obtained by the model is 99.56%. A software prototype used the most accurate model to classify new data, displaying the top two prediction probabilities and the dominant category. This research produces a model that can be used to solve Indonesian text classification-related problems.
Solar module defects classification using deep convolutional neural network Cahyaningtyas, Rizqia; Madenda, Sarifuddin; Bertalya, Bertalya; Indarti, Dina
International Journal of Advances in Intelligent Informatics Vol 11, No 3 (2025): August 2025
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v11i3.1818

Abstract

Solar modules are essential components of a solar power plant, that are designed to withstand scorching heat, storms, strong winds, and other natural influences. However, continuous usage can cause defects in solar modules, preventing them from producing electrical energy optimally. This paper proposes the development of a deep learning-based system for identifying and classifying solar module surface defects in solar power plants. Module surface condition are classified into five categories: clean, dirt, burn, crack, and snail track. The dataset used consists of 8,370 images, including primary image data acquired directly from the mini solar power plant at the Renewable Energy Laboratory of PLN Institute of Technology, and secondary image data obtained from public repositories. The limitation in the number of images in each category was overcome using data augmentation techniques. The proposed classification model combines Deep Convolutional Neural Networks (DCNN) with transfer learning models (DenseNet201, MobileNetV2, and EfficientNetB0) to perform supervised image classification. Training and testing results on the three models demonstrated that the combination of DCNN + DenseNet201 provided the best performance, with a classification accuracy of 97.85%, compared to 97.25% accuracy for DCNN + EfficientNetB0 and 94.98% for DCNN + MobileNetV2. This research shows that DCNN-based image classification reliably diagnoses solar module defects and supports using RGB images for surface defect classification. Applying the developed system to solar power plant maintenance management can help in accelerating the process of identifying panel defects, determining defect types, and performing panel maintenance or repairs, while ensuring optimal power production.