Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : ANNALES BOGORIENSES

Improvement of Endoglucanase Activity in Penicillium oxalicum ID10-T065 Mutated by Ultra Violet Irradiation and Ethidium Bromide Caniago, Asnany; Mangunwardoyo, Wibowo; Nuswantara, Sukma; Lisdiyanti, Puspita
ANNALES BOGORIENSES Vol 19, No 2 (2015): Annales Bogorienses
Publisher : Research Center for Biotechnology - Indonesian Institute of Sciences (LIPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (235.811 KB) | DOI: 10.14203/ab.v19i2.236

Abstract

Penicillium sp. is known as filamentous fungi that produce complete cellulase. Cellulase. This study aims to improve endoglucanase activity of Penicillium oxalicum ID010-T065 by mutated with ultra violet irradiation (with dose of 0.1 J/cm2, 15 cm), ethidium bromide (10 µg/mL, 1 hour) and combination of both mutagens. The endoglucanase activity of all mutants was higher than that of the wild type (1.03 U/mL). Mutant UVEB-42 exposed to combine mutation showed the highest endoglucanase activity (2.76 U/mL) with a 2.70 fold increase. Mutant EB-45 (1.83 U/mL) exposed to ethidium bromide solution showed a 1.8 fold increase. Mutant UV-13 (1.72 U/mL) exposed to UV irradiation for 3 minutes showed a 1.7 fold increase. All mutants have optimum endoglucanase activity at 50 °C. Mutant UVEB-53 showed the highest thermostability by retaining 86 % of endoglucanase activity at 90 °C. The gene analysis of the endoglucanase I gene showed 3 bases mutated at mutant UV-13 and UVEB-53 that changed proline to serine. Mutant EB-45 showed 4 bases mutated that changed valine to glysine and proline to serine. Two bases mutated at Mutant UVEB-53 changed proline to serine. Bases mutated in eg1 gene could influenced the enhance of enzym activity in mutant.
Enhancement of β-Glucosidase Activity in Penicillium sp. by Random Mutation with Ultraviolet and Ethyl Methyl Sulfonate Syafriana, Vilya; Nuswantara, Sukma; Mangunwardoyo, Wibowo; Lisdiyanti, Puspita
ANNALES BOGORIENSES Vol 18, No 2 (2014): Annales Bogorienses
Publisher : Research Center for Biotechnology - Indonesian Institute of Sciences (LIPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.422 KB) | DOI: 10.1234/98

Abstract

The genus Penicillium has a potential ability to produce β-glucosidase. The aim of the study was to improve the β-glucosidase activity of Penicillium sp. ID10-T065 with physical (Ultraviolet = UV), chemical (Ethyl Methyl Sulfonate = EMS), and combined mutation (UV-EMS). The spores of Penicillium sp. ID10-T065 were exposed into UV irradiation for 3 minutes with dose of 0.1 J/cm2 and 13 cm of distances. Chemical mutation was done by treated spores into 3% of EMS solution for an hour. Combined mutation of UV and EMS were also performed by UV for 3 minutes (0.1 J/cm2, 15 cm) and continued with soaking into 2-3% of EMS solution. The developed mutants were screened, selected and assayed. Comparison of enzyme activities with the wild- type (1.78 U/ml), mutant UV13 (5.53 U/ml) showed a 3.1 fold increase; mutant EM31 (4.26 U/ml) showed a 2.4 fold increase. Meanwhile, mutant UM23 obtained from the multiple exposures showed a decreased activity (1.75 U/ml). Mutant UV13 showed the best enzyme activity to be considered as a potential strain for β-glucosidase producer. This result needs to be further elaborated especially on its genetic stability studies in order for the ascertained as a stable mutant.
Diversity and Antimicrobial Activity of Lichens-Associated Actinomycetes in Cibinong Science Centre (CSC) and Cibodas Botanical Garden (CBG) Indonesia Susanti, Agustina Eko; Ratnakomala, Shanti; Mangunwardoyo, Wibowo; Lisdiyanti, Puspita
ANNALES BOGORIENSES Vol 23, No 1 (2019): Annales Bogorienses
Publisher : Research Center for Biotechnology - Indonesian Institute of Sciences (LIPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/ann.bogor.2019.v23.n1.%p

Abstract

    Bioprospecting has developed to all biological taxa including procaryotic. Actinomycetes become interesting procaryotic because of the ability to produce important secondary metabolite for human life. Actinomycetes are known as the largest antibiotic producer that has a broad range habitat. Some research has been done to find new antibiotic from the various habitat of actinomycetes. One of the interesting habitats of actinomycetes which never been explored in Indonesia is lichens... Lichens as the symbiotic structure of alga and fungi areknown as the ecological niche of various kinds of microorganisms including actinomycetes. Cibinong Science Centre (CSC) and Cibodas Botanical Garden (CBG) have various species of trees as the habitat of lichens. These areas are known as one of the research locations to explore the biodiversity of Indonesia. The aims of this research is to study the diversity and antimicrobial potency of actinomycetes isolated from 10 lichen samples with various type of thallus; crustose, fructose and foliose. Lichen samples were grown on the bark of 9 trees species in CSC and CBG. Isolation process used three agar media; HV, YIM6 and YIM711 with cycloheximide and nalidixic acid. Molecular identification based on 16S rRNA gene sequence. Antimicrobial activity was tested to 65 isolates by agar diffusion method to Bacillus subtilis BTCC B.612, Escherichia coli BTCC B.614, Candida albicans BTCC Y.33, Staphylococcus aureus BTCC B.611, Micrococcus luteus BTCC B.552. Isolation process retrieved 125 isolates with the highest number grow on HV agar medium. Based on the sample, the highest number of actinomycetes were isolated from crustose lichen attached on the bark of Averrhoea carambola. A total 69 isolates were identified as the genera Actinoplanes, Amycolatopsis, Angustibacter, Kribbella, Micromonospora, Mycobacterium, and Streptomyces. The screening process showed 24 isolates have antimicrobial activity, with the highest inhibitory activity against Micrococcus luteus BTCC B.552.