Claim Missing Document
Check
Articles

Found 40 Documents
Search

ZnAl LDH-based Derivative Materials as Photocatalysts: Synthesis, Characterization, and Catalytic Performance in Tetracycline Degradation Rohmatullaili; Ahmad, Nur; Erviana, Desti; Zultriana; Savira, Dila; Mohadi, Risfidian; Lesbani, Aldes
Science and Technology Indonesia Vol. 9 No. 2 (2024): April
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.2.457-469

Abstract

Layered Double Hydroxide (LDH)-derived materials exhibited different characteristics from LDH precursors. The conversion of ZnAl LDH into its derivative material has been carried out to find the best catalyst for TC degradation. ZnAl (LDH)-based catalysts in this study have been effectively synthesized using coprecipitation, calcination, and restacking procedures. ZnAl Layered Double Oxide (LDO) is derived from the calcination of ZnAl LDH at 500°C. ZnAl LDH was also modified by adding Garcinia mangostana pericarp extract (GME). XRD, FT-IR, UV-DRS, and SEM-EDX were used to investigate the synthesized catalyst. ZnAl LDH exhibited the typical LDH FT-IR spectra, whereas ZnAl LDO showed metal oxide-like spectra, and the ZnAl-GME composite displayed the combination spectra of precursor material. The ZnAl LDH XRD diffraction pattern exhibited the attributes of a layered material, whereas the other three catalysts did not. Calcination destroyed the layered structure of ZnAl LDH, whereas the addition of GME to LDH and LDO generated a single-layered composite. The modified ZnAl-GME composite showed a decrease in both particle size and bandgap energy. At an ideal pH of 5, the synthesized catalyst was used in a batch system photodegradation of 5 mg/L Tetracycline (TC), employing solar light irradiation. ZnAl LDO holds the most significant catalytic activity and structural stability through the fifth regeneration cycle, degraded TC up to 100% in 90 minutes.
Optimization of Nanoemulsion Formula Containing Erythromycin with VCO and Varying Concentrations of Tween-80 and PEG-400 Mardiyanto; Mohadi, Risfidian; Fithri, Najma Annuria; Kurniawan, Gilang
Science and Technology Indonesia Vol. 9 No. 3 (2024): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.3.697-709

Abstract

Erythromycin, a macrolide antibiotic is classified into Biopharmaceutical Classification System (BCS) class II which has low solubility in water. The low solubility corresponds to the bioavailability in the blood. One strategy to increase the solubility of Erythromycin is the formulation of erythromycin in nanoemulsion. This research aims to form nanoemulsion using the PIT (Phase Transition Temperature) method for obtaining the optimum formula of erythromycin nanoemulsion using virgin coconut oil (VCO) can be found with varying concentrations of Tween 80 surfactant and PEG 400 cosurfactant. The selection of the optimum formula was assisted by Design Expert software with the Factorial design method 22. The basis for determining the optimum formula is based on the results of organoleptic characterization tests, adsorption efficiency (%EE), percent transmittance, viscosity test, pH test, and stability test. The optimum formula was nanoemulsion which had a concentration of Tween 80 25% and PEG 400 25% as a desirability value of <1. The results of the optimum formula showed that the particle size was 170.6±12.8594 nm, polydispersity index (PDI) 0.403±0.04406, and zeta potential -8.8667±0.25697 mV and had an appropriate stability without phase separation during stability test.
Removal of Cr(VI) from aqueous solution by biochar derived from rice husk Mohadi, Risfidian; Palapa, Neza Rahayu; Taher, Tarmizi; Siregar, Patimah Mega Syah Bahar Nur; Normah; Juleanti, Novie; Wijaya, Alfan; Lesbani, Aldes
Communications in Science and Technology Vol 6 No 1 (2021)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.6.1.2021.293

Abstract

In this work, biochar produced from Indonesian rice husks. Then used as adsorbent of Cr(VI) in aqueous solution. The XRD pattern of biochar showed the characterization pattern at 23º (002) reflection, appearance of silicate oxide, and the carbon vibrations. The surface area and SEM morphologies confirmed that after pyrolysis treatment the surface of rice husk has changed. The surface area of biochar increased after thermal treatment. The adsorption study of Cr(VI) by biochar demonstrate 2nd-order reaction, and Langmuir isotherm models. The maximum adsorption capacity of biochar derived rice husk to adsorb Cr(VI) is 161.290 mg/g, and biochar showed the good potential as reuseable adsorbent to remove heavy metal in aqueous solution.
Mg/Al-CH, Ni/Al-CH and Zn/Al-CH, as adsorbents for Congo Red removal in aqueous solution Siregar, Patimah Mega Syah Bahar Nur; Normah; Juleanti, Novie; Wijaya, Alfan; Palapa, Neza Rahayu; Mohadi, Risfidian; Lesbani, Aldes
Communications in Science and Technology Vol 6 No 2 (2021)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.6.2.2021.547

Abstract

In this study, chitosan was extracted from shrimp shells by demineralization and deproteination processes. The extracted chitosan was used to modify the layered double hydroxide and used as an adsorbent for the removal of congo red from aqueous solutions. Composites were successfully synthesized using M2+/Al (M2+ = Zn, Mg, Ni) and chitosan (CH) and the samples obtained were characterized using XRD and FTIR. The X-ray diffraction (XRD) pattern appeared at the layered double hydroxide peak of 2? = 11.63°; 23.00°; 35.16°; and 61.59° and chitosan at 2? = 7.93° and 19.35. The composite appearing in the layered double hydroxide and chitosan indicated that the composite material has been successfully synthesized. The XRD diffraction patterns of Zn/Al-CH, Ni/Al-CH, and Mg/Al-CH showed low crystallinity. The Fourier Transform Infrared (FTIR) spectra verifying absorption spectrum showed the presence of two bands at 3448 cm-1, 1382cm-1 characteristic to both chitosan and LDH. Adsorption of Congo Red (CR) followed the pseudo-second-order and Langmuir isotherm models. The adsorption capacities of Zn/Al-CH, Ni/Al-CH, and Mg/Al-CH were 181.818 mg/g, 227.273 mg/g, and 344.828 mg/g, respectively. The layered double hydroxide-chitosan composite adsorption was endothermically characterized by positive enthalpy and entropy values. On the other hand, the adsorption spontaneously was characterized by a negative Gibbs free energy value. The composites in this study were formed from LDH modified from chitosan extracted from shrimp shells to form Zn/Al-CH, Ni/Al-CH, and Mg/Al-CH. The results of the characterization showed a number of characteristics that resembled the constituent materials in the form of LDH and chitosan. After being applied as an adsorbent to absorb Congo red dye, it then showed the most effective results using Mg/Al-CH adsorbent with an adsorption capacity of 344.828 mg/g.
Mg/Cr-(COO)22- layered double hydroxide for malachite green removal Palapa, Neza Rahayu; Badri, Arini Fousty; Mardiyanto; Mohadi, Risfidian; Taher, Tarmizi; Lesbani, Aldes
Communications in Science and Technology Vol 7 No 1 (2022)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.7.1.2022.851

Abstract

Mg/Cr layered double hydroxide (LDH) was prepared and modified using an intercalation of oxalate anions ((COO)22-) to form Mg/Cr-(COO)22. The materials were then investigated to malachite green removal to determine the adsorption ability. Furthermore, the desorption process and regeneration of adsorbent were systematically conducted. The adsorption of green malachite on Mg/Cr- LDH and Mg/Cr-(COO)22- materials fitted to the pseudo-second-order (PSO) kinetic model and Freundlich isotherm model with an adsorption capacity of 33.784 mg/g (333K) for Mg/Cr LDH and 64.516 mg/g (333K) for Mg/Cr-(COO)22-. Thermodynamic data showed that the adsorption process was spontaneous and endothermic. Also, the appropriate reagent desorption study was found as hydrochloric acid and material regeneration studies exhibited a good recycling performance after 3 times cycles and, the Mg/Cr-oxalate showed a good performance for malachite green adsorption. It can be concluded that Mg/Cr--(COO)22- can adsorb the dye stuffs effectively.
Modification of pristine layered double hydroxide to form metal oxide composites as an anionic dye photodegradation catalysts Yuliasari, Nova; Amri; Mohadi, Risfidian; Elfita; Lesbani, Aldes
Communications in Science and Technology Vol 7 No 2 (2022)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.7.2.2022.1009

Abstract

Pristine layered double hydroxide (LDH) in the form of clay Mg/Al LDH was enhanced its catalytic ability by impregnating metal oxides to form Mg/Al-metal oxide composites in congo red (CR) degradation. The composite was calcined at a not high temperature of 300 oC and characterized using SEM and DRUV. In this report, the photodegradation of CR as anionic dye was optimized based on the variables of pH, catalyst weight and time radiation. The stability of the catalyst was studied from the percent degradation in the recycling test. The characterization of the catalyst that has undergone 5th regeneration cycles was carried out using XRD and FTIR. The results of this study revealed that catalysis by Mg/Al-metal oxide composites resulted in a better percent degradation, rate constant and materials stability than pristine Mg/Al LDH. Mg/Al LDH, Mg/Al-TiO2 and Mg/Al-ZnO catalyzed the photodegradation of CR by 65.97%, 73.06 % and 86.86%, respectively.
Palm oil mill effluent (POME) precipitation using ammonium-intercalated clay coagulant Priatna, Satria Jaya; Hakim, Yusuf Mathiinul; Alfarizi, Muhammad Afif; Sailah, Siti; Mohadi, Risfidian
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1034

Abstract

Clay intercalation has been completed to improve coagulation ability using ammonium ions intercalant via multi-step intercalation. The intercalated clay was confirmed by Scanning Electron Microscope-Energy Dispersive Spectroscopy analysis of expanded lamellar and reduction impurities. Fourier Transform Infra-Red analysis confirmed the sharp and strong peak adsorption at 1448 cm-1 as ammonium (NH4+) bendingvibration, and X-Ray Diffraction analysis confirmed the peak shifting to smaller 2? at 10.08° as increasing basal spacing because of ammonium ion intercalated. The Palm Oil Mill Effluent (POME) coagulation was carried out using contact time and coagulant dose variations to determine the optimum conditions, reaching 45 minutes of coagulation and 0.4 g coagulant was used. Furthermore, the turbidity, free fatty acid, and total suspended solids were measured to reach the reduction values of 93%, 49.7%, and 73.7%, respectively. The reusable study of ammoniumintercalated clay confirmed the stability of the three cycles of coagulation used.
Photocatalytic of anionic dyes on Congo red with M2+/Al (M2+=Ni, Mg, and Zn) layered double hydroxide intercalated polyoxometalate Hanifah, Yulizah; Mohadi, Risfidian; Mardianto; Nur Ahmad; Suheryanto; Lesbani, Aldes
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1170

Abstract

The modification catalysts of layered double hydroxide (LDH) with polyoxometalate based on Keggin type were prepared and characterized using X-Ray, FTIR, and SEM to confirm the layered double hydroxide structure. Intercalation was successfully synthesized and showed a heterogeneous aggregate resulted from SEM analysis. The degradation parameters of LDH pristine and LDH composite were determined by observing a number of factors such as pH, catalyst weight, and degradation time. The modification material resulted by preparation material LDH and polyoxometalate (POM) successfully resulted in the lower band gap value compared to material pristine LDH allowing LDH polyoxometalate as photocatalysts to show good photocatalytic activities. The NiAl-SiW12O40 material had the highest percentage of degradation removing Congo Red up to 86% degradation when compared to another composite material, yet it was still significantly better than LDH pristine. The result showed that the LDH composite presented excellent photocatalytic activity in reducing Congo Red.
Efficient Adsorption of Methylene Blue Dye Using Ni/Al Layered Double Hydroxide-Graphene Oxide Composite Amri, Amri; Wibiyan, Sahrul; Wijaya, Alfan; Ahmad, Nur; Mohadi, Risfidian; Lesbani, Aldes
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20121

Abstract

To address environmental pollution, we developed Ni/Al layered double hydroxide-graphene oxide (Ni/Al-GO) adsorbent materials for the purpose of eliminating methylene blue (MB) dye pollutants. The adsorption process was explored by examining many experimental factors, including temperature, regeneration/reuse procedure, pH, and time, and their effects on the material. The appropriate model for the isotherm is the Langmuir isotherm. The Ni/Al-GO material achieved a maximum adsorption capacity of 61.35 mg/g for MB dye at a temperature of 60 °C. The thermodynamic characteristics indicate that the adsorption process is both endothermic and spontaneous as the temperature increases. The regeneration method demonstrated that the Ni/Al-GO material has a highly stable structure, enabling it to be utilized for five cycles with a remarkable regeneration rate of 93.49% in the fifth cycle. The pH that yielded the best results for all materials was pH 10, and the kinetic model demonstrated a pseudo second-order behavior. Copyright © 2024 by Authors, Published by MKICS and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Optimization of Desulfurization of 4-Methyldibenzothiophene and 4,6-Dimethyldibenzothiophene Using Mg/Al Layered Double Hydroxide Equipped with ZnO/TiO2 Amri, Amri; Ahmad, Nur; Wibiyan, Sahrul; Wijaya, Alfan; Mardiyanto, Mardiyanto; Royani, Idha; Mohadi, Risfidian; Lesbani, Aldes
Indonesian Journal of Chemistry Vol 24, No 4 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88790

Abstract

The growth of heavy industry leads to an increase in sulfur dioxide emissions, impacting health, economy, and the fulfilment of the ecological needs for society. Sulfur removal is carried out using the oxidative desulfurization (ODS) method. In this study, layered double hydroxide materials of Mg/Al, Mg/Al-TiO2, and Mg/Al-ZnO were successfully synthesized and analyzed using X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) techniques. Those materials are used as catalysts for the desulfurization of 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). Composite Mg/Al catalysts with metal oxides provide superior desulfurization process efficiency and enhanced stability, making them highly effective for repeated use. The conversion percentage of desulfurization of 4-MDBT and 4,6-DMDBT increases with time. The n-hexane is a suitable solvent for desulfurization of 4-MDBT and 4,6-DMDBT. All catalysts exhibit significant heterogeneity that greatly aids in the separation process.